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Chapter 1: Introduction
Optimization and robustness analysis have become important tools for the virtual development of in-
dustrial products. In parametric optimization, the optimization variables are systematically modified by
mathematical algorithms in order to get an improvement of an existing design or to find a global op-
timum. The design variables are defined by their lower and upper bounds or by several possible discrete
values. In real world industrial optimization problems, the number of design variables can often be very
large. Unfortunately, the efficiency of mathematical optimization algorithms decreases with increasing
number of design variables. For this reason, several methods are limited to a moderate number of
variables, such as gradient based and Adaptive Response Surface Methods. With the help of sensitivity
analysis the designer identifies the variables which contribute most to a possible improvement of the
optimization goal. Based on this identification, the number of design variables may be dramatically re-
duced and an efficient optimization can be performed. Additional to the information regarding important
variables, sensitivity analysis may help to decide, if the optimization problem is formulated appropriately
and if the numerical CAE solver behaves as expected.

A modern approach to search for better designs or to compute the ”best” design has to introduce all
available engineering know how and has to automate a multidisciplinary optimization process. By spe-
cifying the design criteria as objectives and constraints and specifying the space of all possible designs
with optimization parameters, a framework for numerical optimization can be defined. Part of the
challenge of defining a multidisciplinary optimization problem will be the communication of different
design groups about conflicting objectives, fixed criteria or weighted com-promise objective functions.
Consequently, the degree of non-linearity has to be taken into account in the optimization process.
Because of that the resulting optimization problem may become very noisy, very sensitive to design
changes or ill conditioned for mathematical function analysis (non-differentiable, non-convex, non-
smooth).

That defines the requirements to a modern optimization tool. Arbitrary solvers have to be connected,
optimization strategies for smooth as well as for non-smooth or even ill-posed problems have to be
available.

Besides the problem to find an optimal design, the evaluation of the robustness, for example, the
sensitivity of unavoidable scatter of design variables due to the structural response, becomes more and
more important. Very often, optimized designs tend to be very sensitive to small (sometimes random)
fluctuations of parameters. Such phenomena may occur due to system instabilities like bifurcation
problems in the structure. Design robustness can be checked by applying a systematic perturbation
analysis based on a randomly generated design sample set. Statistics on the sample set allows the
evaluation of robustness of the optimized design.

1.1. optiSLang Documentation Set

The following guides form the optiSLang documentation set.

• optiSLang and Statistics on Structures Beta Features

9
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Describes the beta features contained in the optiSLang and Statistics on Structures software.

• optiSLang Excel Add-in Guide

Describes how to use and troubleshoot the optiSLang add-in for Microsoft Excel.

• optiSLang Interfaces and Customization Guide

Describes the available optiSLang external and programming interfaces. It also provides links to the
available API documentation.

• optiSLang Inside Workbench

Describes how to use the Ansys Workbench optiSLang Extension.

• optiSLang Installation and Licensing Guide

Describes how to install optiSLang and configure licensing options using the optiSLang standalone
installer. For installation instructions using the Ansys unified installer, see the Ansys, Inc. Installation
Guides.

• optiSLang Python API Guide

Provides an overview of the optiSLang Python API which is used to create, modify, and customize
optiSLang projects and functionality with Python scripting.

• optiSLang Tutorials

Demonstrates how to use optiSLang to solve different types of problems.

• optiSLang User's Guide

Describes how to use and configure the optiSLang software.

• optiSLang Web Service API Documentation

Provides an overview of the optiSLang Web Service REST API which is used to interact with the
optiSLang Web Service back end.

• optiSLang Web Service Installation and Configuration Guide

Describes how to install and configure the optiSLang Web Service platform.

• optiSLang Web Service User's Guide

Describes how to use the optiSLang Web Service platform.

• Statistics on Structures Tutorials

Demonstrates how to use SoS to solve different types of problems.

• Statistics on Structures User's Guide

Describes how to install and use the SoS software.
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Chapter 2: Sensitivity Analysis
By definition, sensitivity analysis is the study of how the uncertainty in the output of a model can be
apportioned, qualitatively or quantitatively, to different sources of variation in the input of a model
(Saltelli et al. 2008 (p. 90)). In order to quantify this contribution, variance based methods are very
suitable. With these methods the proportion of the output variance, which is caused by an random input
variable, is directly quantified.

Variance based sensitivity analysis is also very suitable as an optimization pre-processing tool. By rep-
resenting continuous optimization variables by uniform distributions without variable interactions,
variance based sensitivity analysis quantifies the contribution of the optimization variables to a possible
improvement of the model responses. In contrast to local derivative based sensitivity methods, the
variance based approach quantifies the contribution with respect to the defined variable ranges.

Unfortunately, sufficiently accurate variance based methods require huge numerical effort due to the
large number of simulation runs. Therefore, often meta-models are used to represent the model responses
by surrogate functions in terms of the model inputs. However, many meta-model approaches are
available and it is often not clear which one is most suitable for which problem (Roos et al. 2007 (p. 90)).
Another disadvantage of meta-modeling is its limitation to a small number of input variables. Due to
the so-called "curse of dimensionality" the approximation quality decreases for all meta-model types
dramatically with increasing dimension. As a result, an enormous number of samples is necessary to
represent high-dimensional problems with sufficient accuracy. In order to overcome these problems,
we developed the Metamodel of Optimal Prognosis (Most and Will 2008 (p. 90)). In this approach the
optimal input variable subspace together with the optimal meta-model are determined with help of
an objective and model independent quality measure, the Coefficient of Prognosis. In the following
chapter the necessity of such a procedure is explained by discussing other existing methods for sensit-
ivity analysis. After presenting the MOP concept in detail, the strength of this approach is clarified by
a comparison with very common meta-model approaches such as Kriging and neural networks

Figure 2.1: Flowchart of optiSLang Sensitivity Analysis

In Figure 2.1: Flowchart of optiSLang Sensitivity Analysis (p. 11) the general flow of an optiSLang sens-
itivity analyis is shown: after the definition of the design variables and model responses the design
space is scanned by Design of Experiments or sampling methods. These samples are evaluated by the
solver and for each design the model responses are determined. Approximation models are built for
each model response and assessed regarding their quality. Finally variance based sensitivity indices are
estimated by using the approximation models.

11
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2.1. Scanning the Space of Input Variables

In order to perform a global sensitivity analysis, the space of the design variables has to be scanned by
discrete realizations. Each realization is one set of values belonging to the specified inputs. As design
exploration often deterministic Designs of Experiments (DoE) are applied (Myers and Montgomery
2002 (p. 90)). These design schemes are mainly based on a regular arrangement of the samples, as in
the full factorial design. Generally the number of samples increases exponentially with increasing dimen-
sion. Fractional factorial designs use only a part of the full factorial samples, however the number of
levels in each direction is limited. In Figure 2.2: Classical Design of Experiment Schemes (p. 12) a few
typical DoE schemes are shown.

Figure 2.2: Classical Design of Experiment Schemes

The central composite design contains, additionally to the 2k full factorial design points, the midpoints
of each hypercube surface. D-optimal designs are generated in order to represent a linear or quadratic
function with optimal accuracy. Further details about classical DoE schemes, which are also available
in optiSLang, can be found in (Myers and Montgomery 2002 (p. 90)).

As alternatives to deterministic design exploration methods, stochastic sampling schemes can be applied.
A very common approach is random sampling, which is called Monte Carlo Simulation (MCS). For design
exploration the design variables are assumed to follow a uniform distribution with given lower and
upper bounds. The random samples are generated independent in the given design space. If only a
small number of samples is used, often clusters and holes can be observed in the MCS sampling set as
shown in Figure 2.3: Stochastic Sampling Schemes (p. 13).

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.12

Sensitivity Analysis



Figure 2.3: Stochastic Sampling Schemes

More critical is the appearance of undesired correlations between the input variables. These correlations
may have a significant influence on the estimated sensitivity measures. In order to overcome such
problems, optiSLang provides optimized Latin Hypercube Sampling (LHS) (McKay, Beckman, and Conover
1979 (p. 90)), where the input distributions and the specified input correlations are represented very
accurately even for a small number of samples. In the standard Latin Hypercube approach the minimiz-
ation of the undesired correlation is performed by using the method according to (Iman and Conover
1982 (p. 89)). Furthermore an advanced Latin Hypecube Sampling (ALHS) is available, where the correl-
ation errors are minimized by stochastic evolution strategies (Hungtington and Lyrintzis 1998 (p. 89)).
This approach is recommended if the number of input variables is less than 50.

Compared to Latin Hypercube sampling deterministic design schemes have two main disadvantages:
They are limited to a small number of variables due to the rapidly increasing number of required samples
when increasing the model dimension. Further, a reduction of the number of inputs does not improve
the information gained from the samples, since only two or three levels are used in each dimension.
This is illustrated in Figure 2.4: Dimension Reduction (p. 14). In this figure, a nonlinear function having
one major and four almost unimportant variables is evaluated. Using the LHS, the nonlinearity can be
represented very well in the reduced space. In the case of the full factorial design, which contains three
levels in each directions, again only three positions are left in the reduced space and the dimension
reduction does not allow a better representation of the model response.

13
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Figure 2.4: Dimension Reduction

Dimension reduction for a nonlinear function with five inputs based on Latin Hypercube Sampling

(left) with 100 samples and full factorial design (right) with 35 = 243 samples

2.2. Variance Based Sensititvity Analysis

See the following sections:

2.2.1. First Order and Total Effect Sensitivity Indices

2.2.2. Coefficient of Correlation

2.2.1. First Order and Total Effect Sensitivity Indices

Assuming a model with a scalar output Y as a function of a given set of m random input parameters
Xi

(2.1)

the first order sensitivity index is defined as

(2.2)

where V(Y) is the unconditional variance of the model output and V(Y|Xi) is the variance of Y caused

by a variation of Xi  only.

Since first order sensitivity indices measure only the decoupled influence of each variable an extension
for higher order coupling terms is necessary. Therefore total effect sensitivity indices have been intro-
duced

(2.3)

where V(Y|X∼i) is the variance of Y caused by all model inputs without Xi .
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In order to estimate the first order and total sensitivity indices, a matrix combination approach is very
common (Saltelli et al. 2008 (p. 90)). This approach calculates the conditional variance for each variable
with a new sampling set. In order to obtain a certain accuracy, this procedure requires often more
than 1000 samples for each estimated conditional variance. Thus, for models with a large number of
variables and time consuming solver calls, this approach can not be applied efficiently.

2.2.2. Coefficient of Correlation

The coefficient of correlation is the standardized covariance between two random variables X and Y

(2.4)

where COV(X, Y) is the covariance and σ is the standard deviation. This quantity, known as the linear
correlation coefficient, measures the strength and the direction of a linear relationship between two
variables. It can be estimated from a given sampling set as follows

(2.5)

where N is the number of samples, xi  and yi  are the sample values, and  and  are the estimates

of the mean value and the standard deviation, respectively. The estimated correlation coefficient be-
comes more inaccurate, as its value is closer to zero, which may cause a wrong deselection of appar-
ently unimportant variables.

If both variables have a strong positive correlation, the correlation coefficient is close to one. For a
strong negative correlation ρ is close to minus one. The squared correlation coefficient can be inter-
preted as the first order sensitivity index by assuming a linear dependence. The drawback of the linear
correlation coefficient is its assumption of just a linear dependence. Based on the estimated coefficients
only, it is not possible to decide on the validity of this assumption. Correlation coefficients, which
assume a higher order dependence or use rank transformations solve this problem only partially.
Additionally, often interactions between the input variables are important. These interactions can not
be quantified with the linear and higher order correlation coefficients.

We can summarize that although the correlation coefficient can be simply estimated from a single
sampling set, it can only quantify first order effects with an assumed dependence without any quality
control of this assumption.

2.3. Polynomial Based Sensitivity Analysis

See the following sections:

2.3.1. Polynomial Regression

2.3.2. Coefficient of Determination

2.3.3. Coefficient of Importance

2.3.1. Polynomial Regression

A commonly used approximation method is polynomial regression, where the model response is
generally approximated by a polynomial basis function of linear or quadratic order with or without
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coupling terms. The model output yi  for a given set x i of the input parameters X can be formulated

as the sum of the approximated value  and an error term .

(2.6)

where p(x) is the polynomial basis,

(2.7)

and β is a vector containing the unknown regression coefficients. These coefficients are generally
estimated from a given set of sampled support points by assuming independent errors with equal
variance at each point. By using a matrix notation the resulting least squares solution reads

(2.8)

where P is a matrix containing the basis polynomials of the support point samples and y is the vector
of support point values.

2.3.2. Coefficient of Determination

The Coefficient of Determination (CoD) can be used to assess the approximation quality of a polyno-
mial regression model. This measure is defined as the relative amount of variation explained by the
approximation (Montgomery and Runger 2003 (p. 90))

(2.9)

where SST  is equivalent to the total variation of the output Y, SSR  represents the variation due to

the regression, and SSE  quantifies the unexplained variation,

(2.10)

If the CoD is close to one, the polynomial approximation represents the support point values with
small errors. However, the polynomial model would fit exactly through the support points, if their
number is equivalent to the number of coefficients p. In this case, the CoD would be equal to one,
independent of the true approximation quality. In order to penalize this over-fitting, the adjusted
Coefficient of Determination was introduced (Montgomery and Runger 2003 (p. 90))

(2.11)

However, the over-estimation of the approximation quality cannot be avoided completely.
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Figure 2.5: Subspace Plot and Convergence of the CoD Measures

Subspace plot of the investigated nonlinear function (Equation 2.12 (p. 17)) and convergence of the
CoD measures with increasing number of support points.

In order to demonstrate this statement, an investigation of a nonlinear analytical function is performed.
The function of five independent and uniformly distributed input variables reads as follows

(2.12)

where the contributions of the five inputs to the total variance are X1: 18.0%, X2: 30.6%, X3: 64.3%, X4:

0.7%, X5: 0.2%. This means, that the three variables, X1, X2 and X3, are the most important.

In Figure 2.5: Subspace Plot and Convergence of the CoD Measures (p. 17), the convergence of the
standard CoD of linear and quadratic response surfaces is shown, where a strong over-estimation of
the approximation quality can be noticed, when the number of samples is relatively small. Even the
adjusted CoD shows a similar behavior. This fact limits the CoD to cases where a large number of
support points compared to the number of polynomial coefficients is available. However, in industrial
applications this is often not the case. Another disadvantage of the CoD measure is its limitation to
polynomial regression. For other local approximation models, like interpolating Kriging, this measure
may be equal or close to one, however the approximation quality may be poor.

2.3.3. Coefficient of Importance

The Coefficient of Importance (CoI) was developed to quantify the input variable importance by using
the CoD measure. Based on a polynomial model, including all investigated variables, the CoI of a
single variable Xi with respect to the response Y is defined as follows

(2.13)

where  is the CoD of the full model including all terms of the variables in X and  is the CoD
of the reduced model, where all linear, quadratic and interactions terms belonging to Xi are removed

from the polynomial basis. For both cases the same set of sampling points is used. If a variable has
low importance, its CoI is close to zero, since the full and the reduced polynomial regression model
have a similar quality. The CoI is equivalent to the explained variation with respect to a single input
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variable, since the CoD quantifies the explained variation of the polynomial approximation. Thus it
is an estimate of the total effect sensitivity measure given in Equation 2.3 (p. 14). If the polynomial
model contains important interaction terms, the sum of the CoI values should be larger than the CoD
of the full model.

Since it is based on the CoD, the CoI is also limited to polynomial models. If the total explained variation
is over-estimated by the CoD, the CoI may also give a wrong estimate of the variance contribution
of the single variables. However, in contrast to the Coefficient of Correlation, the CoI can handle linear
and quadratic dependencies including input variable interactions. Furthermore, an assessment of the
suitability of the polynomial basis is possible. Nevertheless, an estimate of the CoI values using a full
quadratic polynomial is often not possible because of the required large number of samples for high
dimensional problems.

2.4. Metamodel of Optimal Prognosis

See the following sections:

2.4.1. Moving Least Squares Approximation

2.4.2. Coefficient of Prognosis

2.4.3. Metamodel of Optimal Prognosis

2.4.1. Moving Least Squares Approximation

In the Moving Least Squares (MLS) approximation (Lancaster and Salkauskas 1981 (p. 89)) a local
character of the regression is obtained by introducing position-dependent radial weighting functions.
MLS approximation can be understood as an extension of the polynomial regression. Similarly the
basis function can contain every type of function, but generally only linear and quadratic terms are
used. The approximation function is defined as

(2.14)

with changing (“moving”) coefficients a(x) in contrast to the constant global coefficients of the
polynomial regression. The final approximation function reads

(2.15)

where the diagonal matrix W(x) contains the weighting function values corresponding to each support

point. Distance-dependent weighting functions  have been introduced. Mostly the
well known Gaussian weighting function is used

(2.16)

where the influence radius D directly influences the approximation error and α is a numerical constant.
A suitable choice of this quantity enables an efficient smoothing of noisy data. In Figure 2.6: Local
Weighting Principle and Smoothing Effect (p. 19) the local weighting principle and the smoothing
effect is shown.
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Figure 2.6: Local Weighting Principle and Smoothing Effect

Local weighting of support point values (left) and influence of the influence radius D on the smoothing
of the MLS approximation function (right).

The MLS approach has the advantage that no training is necessary before an approximation point
can be evaluated. At each point only the weighting factors and the local polynomial coefficients have
to be calculated. This makes this method very fast compared to other approximation techniques.

2.4.2. Coefficient of Prognosis

In (Most and Will 2008 (p. 90)) a model independent measure to assess the model quality was pro-
posed. This measure is the Coefficient of Prognosis (CoP), which is defined as follows

(2.17)

where  is the sum of squared prediction errors. These errors are estimated based on cross
validation. In the cross validation procedure, the set of support points is mapped to q subsets. Then
the approximation model is built by removing subset i from the support points and approximating
the subset model output  using the remaining point set. This means that the model quality is es-
timated only at those points which are not used to build the approximation model. Since the prediction
error is used instead of the fit, this approach applies to regression and even interpolation models.

The evaluation of the cross validation subsets, which are usually between 5 and 10 sets, causes addi-
tional numerical effort in order to calculate the CoP. Nevertheless, for polynomial regression and
Moving Least Squares, this additional effort is still quite small since no complex training algorithm is
required. For other meta-modeling approaches such as neural networks, Kriging and even Support
Vector Regression, the time consuming training algorithm has to be performed for every subset
combination.

In Figure 2.7: Convergence of the CoP Measure by Using MLS Approximation Compared to the Poly-
nomial CoD Measure (p. 20), the convergence of the CoP values for an MLS approximation of the
nonlinear coupled function given in Equation 2.12 (p. 17) is shown in comparison to the polynomial
CoD. The figure indicates that the CoP values are not over-estimating the approximation quality like
the CoD does for a small number of samples.
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Figure 2.7: Convergence of the CoP Measure by Using MLS Approximation Compared to the
Polynomial CoD Measure

The influence radius of the MLS approximation is found by maximizing the CoP measure. As can be
seen in Figure 2.7: Convergence of the CoP Measure by Using MLS Approximation Compared to the
Polynomial CoD Measure (p. 20), the convergence of the approximation quality is much better if only
the three most important variables are used in the approximation model.

2.4.3. Metamodel of Optimal Prognosis

As demonstrated in the previous section, the prediction quality of an approximation model may be
improved if unimportant variables are removed from the model. This idea is adopted in the
Metamodel of Optimal Prognosis (MOP) proposed in (Most and Will 2008 (p. 90)) which is based on
the search for the optimal input variable set and the most appropriate approximation model (polyno-
mial or MLS with linear or quadratic basis). Due to the model independence and objectivity of the
CoP measure, it is well suited to compare the different models in the different subspaces.
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Figure 2.8: CoP Values of Different Input Variable Combinations and Approximation Methods
Obtained with the Analytical Nonlinear Function

In Figure 2.8: CoP Values of Different Input Variable Combinations and Approximation Methods Obtained
with the Analytical Nonlinear Function (p. 21), the CoP values of all possible subspaces and all possible
approximation models are shown for the analytical nonlinear function example. The figure indicates
that there exists an optimal compromise between the available information, the support points and
the model complexity i.e. the number of input variables. The MLS approximation by using only the
three major important variables has a significantly higher CoP value than other combinations. However
for more complex applications with many input variables it is necessary to test a huge number of
approximation models. In order to decrease this effort, in (Most and Will 2008 (p. 90)) advanced filter
technologies are proposed, which reduce the number of necessary model tests. Nevertheless, a large
number of inputs requires a very fast and reliable construction of the approximation model. For this
reason polynomials and MLS are preferred due to their fast evaluation.

As a result of the MOP, we obtain an approximation model which contains the most important variables.
Based on this meta-model, the total effect sensitivity indices, proposed in First Order and Total Effect
Sensitivity Indices (p. 14), are used to quantify the variable importance. The variance contribution of
a single input variable is quantified by the product of the CoP and the total effect sensitivity index
estimated from the approximation model

(2.18)

Since interactions between the input variables can be represented by the MOP approach, they are
considered automatically in the sensitivity indices. If the sum of the single indices is significantly larger
as the total CoP value, such interaction terms have significant importance.

Additionally to the quantification of the variable importance, the MOP can be used to visualize the
dependencies in 2D and 3D subspaces. This helps the designer to understand and to verify the solver
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model. In Figure 2.9: Subspace Plots (p. 22), two subspace plots are shown for the MOP of the analyt-
ical test function. In the X2-X3 and X1- X2 subspace plots, the sinusoidal function behavior and the

coupling term can be observed. Additional parametric studies, such as global optimization can also
be directly performed on the MOP. Nevertheless, a single solver run should be used to verify the final
result of such a parametric study or optimization.

Figure 2.9: Subspace Plots

X2-X3 and X1-X2 subspace plots of the MOP of the nonlinear analytical function given in

Equation 2.12 (p. 17).

2.5. Comparision With Other Approximation and Selection Methods

In this section we compare the MOP approach with other approximation and variable selection methods.
Before using advanced meta-models, we investigate the test case with polynomials and Moving Least
Squares. The analytical nonlinear function introduced in Coefficient of Determination (p. 16) is investig-
ated by different numbers of input variables: only the three main important variables, all five variables
and additional variables without any contribution. In Figure 2.10: Approximation Quality for Polynomial
and MLS Approximation (p. 23), the explained variation of the polynomial and MLS approximation ob-
tained with 100 support and 100 test points is shown with respect to the total number of variables.
Due to the so-called ”curse of dimensionality” the approximation quality decreases rapidly with increasing
dimension. If the MOP is applied, the important variables are retained and the approximation is built
in the optimal subspace. This leads to a high approximation quality even for larger input dimensions.
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Figure 2.10: Approximation Quality for Polynomial and MLS Approximation

Approximation quality for polynomial and MLS approximation compared to the MOP approach for
the analytical function with increasing number of input variables.

In the next step, we investigate the Kriging approximation, that is also known as Gaussian process
model. In Figure 2.11, the approximation quality of the ordinary Kriging approach is shown for the test
function. The significant decrease of the explained variation is similar to that of the MLS approach.
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Figure 2.11: Approximation Quality for Kriging, Support Vector Regression (SVR) and
Artificial Neural Networks (ANN)

Approximation quality for Kriging, Support Vector Regression (SVR) and Artificial Neural Networks
(ANN) compared to the MOP approach for the analytical function.

Furthermore, Support Vector Regression (SVR) and Artificial Neural Networks (ANN) are investigated. A
detailed presentation of these methods can be found in (Roos et al. 2007 (p. 90)). The obtained results
are also plotted in Figure 2.11: Approximation Quality for Kriging, Support Vector Regression (SVR) and
Artificial Neural Networks (ANN) (p. 24), which exhibit a similar behavior as Kriging and MLS. All the
presented results indicate that the utilization of complex meta-model approaches will not overcome
the curse of dimensionality. However, the MOP enables the determination of the optimal variable sub-
space by using fast and reliable approximation methods. In most cases this variable reduction leads to
a significantly better approximation quality.

Finally the MOP approach is compared to the polynomial stepwise selection method. In this approach
polynomial coefficients are selected by different importance criteria in order to detect the important
variables. For comparison, the state of the art implementation in (MATLAB 2010 (p. 90)) is used. In this
implementation important polynomial coefficients are selected by F-test statistics based on a given
polynomial degree. The results given in Figure 2.12: Approximation Quality and Variable Selection of
MATLAB's Stepwise Regression Approach Compared to the MOP Results (p. 25) indicate that the selection
procedure works appropriately only for a linear polynomial basis. By using a full quadratic basis, the
number of selected coefficients increases dramatically and the approximation quality decreases. This
example clarifies the power of the prediction based variable selection applied inside the MOP approach.
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Figure 2.12: Approximation Quality and Variable Selection of MATLAB's Stepwise Regression
Approach Compared to the MOP Results
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Chapter 3: Multidisciplinary Optimization
See the following sections:

3.1. Single-Objective Optimization

3.2. Multi-Objective Optimization

3.1. Single-Objective Optimization

In single-objective optimization problems the optimization task can be formulated by a single scalar-
valued objective function

(3.1)

which is often an implicit function of the design variables. The design variables can be defined as con-
tinuous variables with a lower and upper bound or as discrete variables which assume several discrete
values. In unconstrained optimization prob- lems only the bounds or values of the design variables
limit the optimization space. The optimizer searches between these limits for the minimum value of
the objective function . For maximization problems the sign of the user defined objective function
is inverted in optiSLang to get a minimization task.

In engineering problems often additional restrictions have to be fulfilled by the optimal design. With
help of equality and inequality constraints

(3.2)

such restrictions can be formulated. The constraint functions can represent limitations depending only
on the input variables but also depending on all available model responses and any mathematical
combination of both.

Equality constraints are very difficult to treat in industrial applications. Therefore, it is not allowed to
define equality constraints in optiSLang. However, equality constraints fulfilled with a given tolerance
can be formulated easily as inequality constraints and in that way they can be handled by all optimization
methods available in optiSLang. In order to get an optimal convergence of the optimizer and sufficiently
accurate fulfillment of the constraint conditions, it is very useful to scale the objective and the constraint
functions to be in a similar range. This can be realized e.g. by using the results of the design exploration.

Figure 3.1: Recommended Flowchart for Single-Objective Optimization

In Figure 3.1: Recommended Flowchart for Single-Objective Optimization (p. 27), the recommended
flow of single-objective optimization procedure is shown: after the definition of the design variables
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and objective and constraint functions the design space is explored by sensitivity analysis. The obtained
variable sensitivities may help to reduce the number of design variables. The best designs found in the
sensitivity analysis could be used as start designs for the following optimization procedure which finally
will determine an optimal design.

Accompanying Example: Optimization of a Damped Oscillator

The principles of the optimization methods described in the following sections are demonstrated by a
simple accompanying example. For this purpose the maximum amplitude of a single degree-of-freedom
damped oscillator shown in Figure 3.2: Damped Oscillator: System Properties and Oscillation Behavi-
or (p. 28) shall be minimized.

Figure 3.2: Damped Oscillator: System Properties and Oscillation Behavior

The equation of motion can be formulated depending on the mass m, the spring stiffness k and
damping ratio D as follows

(3.3)

where  is the undamped eigen-frequency. Assuming an initial kinetic energy  and an

initial position , the time-dependent displacement function can be derived as follows

(3.4)

where  is the damped eigen-frequency. The optimization goal is to minimize the maximum

amplitude after 5 seconds by assuming m and k as design parameters and D and  as constants

(3.5)

As optimization constraint, the damped eigen-frequency shall be limited: w ≤ 8 1/s.

If the maximum amplitude after 5 seconds is estimated from the envelope curve shown in Fig-
ure 3.2: Damped Oscillator: System Properties and Oscillation Behavior (p. 28), the objective function is
a smooth and well defined function of the design parameters as shown in Figure 3.3: Objective Function
of the Damped Oscillator (p. 29).
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Figure 3.3: Objective Function of the Damped Oscillator

Objective function of the damped oscillator obtained by using an es- timate of the maximum amplitude
from the envelope curve (left) and by using a coarse time discretization of the displacement curve (right).

The constraint condition is indicated in the figure by the function w = 8 1/s. If the maximum amplitude
is obtained by a time discretization of Equation 3.4 (p. 28) using a coarse time interval, the resulting
objective function may contain local oscillations, which may be interpreted as solver noise. In order to
demonstrate the behavior of the different optimizers in the presence of small solver noise, a time step
of 0.1 seconds is chosen, which leads to a slightly noisy objective function shown additionally in Fig-
ure 3.3: Objective Function of the Damped Oscillator (p. 29).

3.1.1. Gradient-Based Methods

Gradient-based optimization methods use local derivatives of the objective function to find the next
local optimum. The minimum of a convex function can be determined by searching for the point,
where the first derivative is equal to zero as shown in Figure 3.4: Iterative Search of a Gradient-Based
Method Using a Quadratic Approximation of the Objective Function (p. 30).
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Figure 3.4: Iterative Search of a Gradient-Based Method Using a Quadratic Approximation of
the Objective Function

If the second derivatives is known, the objective function can be approximated by a second order
Taylor series. This procedure is called Nonlinear Programming (NLP). Optimization methods using first
and second order derivatives are known as Newton methods (Kelley 1999 (p. 89)). If the CAE solver
is treated as black box, the derivatives have to be calculated by numerical estimates. Since second
order derivatives would require a large number of solver calls, full Newton methods are not applicable
for complex optimization problems. For this reason quasi Newton methods have been developed,
where the second order derivatives are approximated from the first order derivatives of previous iter-
ation steps. Gradient-based methods distinguish each other mainly in the way how the second order
derivatives are estimated and how additional constraint equations are considered. A good overview
over different methods in given in (Kelley 1999 (p. 89)).

In optiSLang the NLPQL approach (Nonlinear Programming by Quadratic Lagrangian) is preferred
(Schittkowski 1986 (p. 90)). First-order derivatives of the objective and constraint functions are estim-
ated from central differences or by one-sided numerical derivatives using a specified differentiation
interval. The NLPQL approach features efficient constraint handling using quadratic Lagrangian.
Starting from a given start point, the method searches for the next local optimum and converges if
the estimated gradients are below a specified tolerance. Since it is a local optimization method, it is
recommended to use the best design of a global sensitivity analysis as start point in order to find the
global optimum. The NLPQL is very efficient in low dimensions with up to 20 design variables. For
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higher dimensional problems the computation of the numerical derivatives becomes more and more
expensive and other methods are more efficient. In the presence of noisy model responses the differ-
entiation interval plays a crucial role. If its taken too small, the estimated gradient is distorted heavily
by the solver noise and the NLPQL runs into a wrong direction. If the solver noise is not dominating
the functional trend an increased differentiation interval could lead to a good convergence of the
optimization procedure.

Figure 3.5: Convergence of the NLPQL Optimizer

Convergence of the NLPQL optimizer for the oscillator optimization problem by using the smooth objective
function based on the envelope estimate (left) and by using the noisy objective function from the time
discretization (right).

In Figure 3.5: Convergence of the NLPQL Optimizer (p. 31), the convergence of the NLPQL approach
is shown for the optimization of the damped oscillator: in the first investigation, the smooth objective
function obtained from the envelope curve estimate is considered. In this case the optimizer converges
in three iteration steps to the true optimum (m = 0.78 kg, k = 50.0 N/m). If the noisy objective function
is investigated with a relatively small differentiation interval (1% of the design space) the optimizer
runs into the wrong direction and will not converge to the true optimum. Nevertheless, by increasing
the differentiation interval the convergence to the true optimum can be achieved for this example.

3.1.2. Response Surface Based Methods

Response surface methods replace the model responses by mathematical surrogate functions. On
this base, the optimization problem is solved using the approximation model instead of time consuming
solver calls. The classical procedure uses a Design of Experiments scheme which is evaluated by the
solver. Based on these designs often polynomial functions are used for the approximation (Myers and
Montgomery 2002 (p. 90)). However, the polynomial degree does often not represent the nonlinearity
of the solver model and a low quality of the approximation leads often to unusable design suggestions.
For this reason it is not recommended to use global polynomial response surface methods only to
search for an optimal design.
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Figure 3.6: Global Polynomial Approximation

Global polynomial approximation of the maximum amplitude (left,  = 98%) and the damped

eigen-frequency (right,  = 96%) of the optimized oscillator using a quadratic basis and a full

factorial design scheme.

In order to demonstrate the weakness of global polynomial response surface approximation in com-
bination with classical DoE schemes, the maximum amplitude and the damped eigen-frequency of
the damped oscillator are approximated by a quadratic polynomial. Support points are generated
using a three-level full factorial design. Although the approximation quality is indicated to be very
well by means of the adjusted Coefficient of Determination, the optimum found on the approximation
(m = 3.31 kg, k = 50.0 N/m) is far away from the true optimum.

Optimization using the Metamodel of Optimal Prognosis

Due to the power of the Metamodel of Optimal Prognosis procedure in finding an optimal variable
subspace and an optimal approximation model for each investigated model response, it is strongly
recommended to use the MOP approximation for a first optimization step instead of global polyno-
mial models. The Coefficient of Prognosis gives a much more reliable estimate of the approximation
quality than the Coefficient of Determination as explained in Coefficient of Prognosis (p. 19). If the
quality of a certain model response, which is used in the objective or constraint functions, is low, the
optimization procedure may not find a useful optimized design. In order to check the quality of the
optimal design found on the MOP, optiSLang provides a verification of the best design where the
solver outputs and the true objective and constraint values are calculated by a single solver call. Often
the best design found by the MOP based optimization is better than the best design of the preceding
sensitivity analysis. If this is the case, this design could be used as a start design for a further local
search.

In the presence of many constraint conditions often the MOP based best design violates one or more
of these conditions if the approximation quality is not perfect. This problem can be solved by adjusting
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the limits of the corresponding constraint conditions in order to push the optimizer running on the
approximation back to the feasible region. After each adjustment of the constraint conditions the
best design should be verified to check for a possible fulfillment of the critical constraints.

Since the solver noise is smoothed by the MOP approximation, this procedure is more stable than
the gradient-based methods. Furthermore, non-convex optimization problems can be solved by using
global optimizers such as evolutionary algorithms (EA) on the approximation function. Nevertheless,
generally the MOP uses uniformly distributed designs for the approximation model, which may lead
to a insufficient local approximation quality around the optimum. Therefore, optimization using
global approximation models should be understood as a low-cost pre-optimization step.

In order to demonstrate the benefit of an optimization on the MOP approximation, the damped os-
cillator is investigated by building the MOP with 100 Latin Hypercube samples. The approximation
functions of the MOP are shown in Figure 3.7: Metamodel of Optimal Prognosis (p. 33).

Figure 3.7: Metamodel of Optimal Prognosis

Approximation of the maximum amplitude (left, CoP = 99%) and of the damped eigen-frequency
(right, CoP = 98%) by using the Metamodel of Optimal Prognosis with 100 Latin Hypercube samples

The figure indicates an excellent approximation quality in terms of the Coefficient of Prognosis. By
using the MOP approximation functions the optimum is determined very close to the true optimum
(m = 0.77 kg, k = 50.0 N/m). The approximated damped eigen-frequency at the obtained optimum
is ω = 8.00 1/s, but the real eigen-frequency verified by the solver is ω = 8.04 1/s, which means that
the constraint condition is slightly violated. In this case a reduction of the maximum allowed eigen-
frequency would force the optimizer to stay in the feasible region.

Adaptive Response Surface Method

In order to improve the approximation quality around the optimum, adaptive meth- ods are very ef-
ficient. optiSLang provides a polynomial based local Adaptive Response Surface Method (ARSM). The
ARSM procedure starts at a single start design, and an initial Design of Experiments (DoE) scheme is
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built having the start design as center point. For linear or quadratic polynomial models the corres-
ponding D-optimal design schemes are preferred as DoE schemes. Based on the approximation of
the model responses the optimal design is searched within the parameter bounds of the DoE scheme.
In the next iteration step a new DoE scheme is built around this optimal design. Depending on the
distance between the optimal designs of the current and previous iteration steps, the DoE scheme
is moved, shrunken or expanded. This procedure is shown in principle in Figure 3.8. Further details
about the adaptation procedure can be found in (Etman et al. 1996 (p. 89)) and (Stander and Graig
2002 (p. 90)).

Figure 3.8: Adaptation of the Polynomial Approximation Scheme Inside the Adaptive Response
Surface Method

The ARSM algorithm converges if the DoE is shrunken to a minimum size or if the change of the op-
timal design position and its objective value between two iteration steps is below a specified tolerance.
Since the DoE scheme uses 50% more designs than needed for the polynomial approximation, the
solver noise is smoothed and few failed designs are not problematic for the optimizer. Due to its ef-
ficiency for up to 20 variables and its robustness against solver noise, the ARSM is the method of
choice for low dimensional single-objective optimization problems. It is recommended to use the
optimal design of a preceding sensitivity analysis as start design for the ARSM. For a strongly localized
search the start range of the initial DoE scheme should be reduced.

In Figure 3.9: Convergence of the Adaptive Response Surface Method (p. 35), the convergence of the
ARSM optimizer is shown for the oscilla- tor problem by analyzing the noisy objective function.
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Figure 3.9: Convergence of the Adaptive Response Surface Method

Convergence of the Adaptive Response Surface Method for the damped oscillator by using the noisy objective
function: designs used for the adaptation (left) and modification of the local DoE bounds during the iteration
(right).

By using a start range of 50% of the design space and a linear polynomial basis, the optimizer runs
within a few iteration steps in the region of the true optimum. After 20 iteration steps the algorithm
converges at m = 0.77 kg, k = 49.3 N/m, where the constraint condition is fulfilled. This example cla-
rifies that the ARSM optimizer shows a stable convergence behavior for noisy model responses in
contrast to the gradient based methods.

3.1.3. Population Based Methods

Population based optimization methods imitate natural processes like biological evolution or swarm
intelligence. Based on the principle ’survival of the fittest’ a population of artificial individuals searches
the design space of possible solutions in order to find a better approximation for the solution of the
optimization problem.

All kinds of population based algorithms are following a particular flow. It starts with a random initial-
ization (see Figure 3.10: General Flowchart of Population Based Optimization Algorithms (p. 36), step
1) of a population containing µ individuals representing possible solutions to the given optimization
problem.

After initialization the actual iteration loop starts, where every loop represents a generation. To create
a new generation the fittest designs will be selected (step 2). The adaption referred to step 3 can be
done in different ways, e.g. crossover or swarm movement. Mutation (step 4) can be applied afterwards.
All individuals are evaluated (step 5) by assigning them a fitness value based on the objective value
and possible constraint violations. Thus a high fitness score means a good accommodation to the
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problem and corresponds with a small objective value. After evaluating each design the archive,
which keeps good solutions, will be updated for the next selection step (step 6). The generation
counter is increased and the iteration continues until a stopping criterion is fulfilled (step 7).

Figure 3.10: General Flowchart of Population Based Optimization Algorithms

The efficiency of population based methods can be significantly improved by choosing a suitable
start population. If the optimization is performed after an initial sensitivity analysis, it is strongly re-
commended to use the best designs of the sensitivity analysis as start population. In order to keep
the global character of the optimization it is useful to select designs covering a certain range of the
design space.

The usage of population based algorithms is recommended in a wide range of applications. They are
often the last resort for solving mathematically ill conditioned problems since their performance may
be still good in case of a high number of design variables or a high amount of failed designs. Never-
theless, the convergence behavior may be slower compared to other optimization methods. The use
of population based algorithms is recommended in all cases where gradient based optimization or
response surface approximation fails, in case of a high number of variables or constraints, in case of
discrete or binary design variables, in case of discrete responses or if the user is unaware about the
optimization problem.
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Evolutionary Algorithms

Evolutionary algorithms (EA) are stochastic search methods that mimic processes of natural biological
evolution. Many EA variants have been implemented over the past decades, based on the three main
classes: genetic algorithms (GA) (Holland 1975 (p. 89)), evolution strategies (ES) (Rechenberg
1964 (p. 90)) and evolutionary programming (EP) (Fogel et al. 1966 (p. 89)). These algorithms have
been originally developed to solve optimization problems where no gradient information is available,
like binary or discrete search spaces, although they can also be applied to problems with continuous
variables. Within optiSLang there is a flexible implementation of genetic algorithms and evolutionary
strategies available which allows to scale between pure (strong) GA and pure (strong) ES.

After the random or manual initialization of a population containing µ individ- uals the actual iteration
loop starts, where every loop represents a generation g. Selection determines λ individuals for repro-
duction based on its fitness or ranking. Different stochastic selection operators are provided in order
to adjust the selection pressure. Parent selection sets the direction of the stochastic search process.
Variation is introduced by applying crossover and mutation operators to the selected individuals.
These new individuals are called newborns or offspring. Finally the resulting offspring individuals are
evaluated and a new population of µ individuals is formed using a replacement scheme.

The main difference between the two main variants, genetic algorithms (GA) and evolution strategies
(ES), is the way variation is introduced to the population. Recombination of genes using crossover
operators represents the main variation within genetic algorithms, while for evolution strategies (ad-
aptive) mutation introduces variation to the population (see Figure 3.11: Evolution Strategies Versus
Genetic Algorithms (p. 38)).

The selection of individuals for reproduction is based on random selection methods and requires an
assignment of fitness values. A rank-based fitness assignment is used to overcome the scaling problem
of the proportional fitness assignment. Due to the random selection and the fitness ranking, the
probability of selecting a design with low fitness is low. However, this is not impossible, so also a
weak design could be used for the generation of offspring.

The crossover operator is a method of recombination where two parent individuals produce two
offspring by sharing information between chromosomes. The intention is to obtain individuals with
better characteristics (exploitation) and to maintain the diversity of the population (exploration).
Crossover is regarded as the main search operator in genetic algorithms.
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Figure 3.11: Evolution Strategies Versus Genetic Algorithms

Mutation introduces random variation to the genes of the offspring chromosome. Each gene is selected
for mutation with a specified probability or mutation rate respectively. The real-valued mutation is
based on a normal distribution function for each gene with the value of the gene as its mean value.
Mutation is the main search operator for evolutionary strategies (ES) but can also be applied after
recombination (see Figure 3.10: General Flowchart of Population Based Optimization Algorithms (p. 36)).
The mutation rate and the standard deviation defined in relation to the variable range are the control
parameters of the mutation which can stay constant or get modified during the run of the algorithm.
optiSLang provides constant and adaptive mutation procedures. Further details can be found in (Bäck
1996 (p. 89)) and (Riedel et al. 2005 (p. 90)).

The final operator, the archive update scheme, specifies how the population of the next generation
is formed out of individuals of the current population (µ) and the generated offspring individuals (λ).
The µ best individuals for the next generation are selected from a selection pool. Different strategies
of constituting the selection pool are available by adjusting the size of the archive (α). The (µ,
λ)-strategy with empty archive leads to a complete replacement of the population at every generation
step with a maximum life span of an individual of only one generation. This method is used for classic

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.38

Multidisciplinary Optimization



genetic algorithms. The (µ + λ)-strategy prevents archive individuals from being replaced by offspring
with worse fitness. This strategy is recommended for use with evolution strategies. The (α(µ) +
λ)-strategy allows the adjustment of the archive update scheme between the two extreme cases.

optiSLang provides a parameter-free constraint handling method taking into account all individuals
of the population, which are compared regarding their objective values and constraint violations. The
infeasible solutions are ranked according their constraint violations and their fitness is modified by
adding the fitness of the worst feasible solution to the rank value. This procedure does not require
additional penalty parameters. Furthermore it can handle multiple constraints without scaling of
constraint values. Even if all individuals are violating constraints, the method can guide the search
towards a feasible region of the constraint space.

In optiSLang a predefined global and local search is available for the evolutionary algorithms. The
global search starts with a random or manually selected start population and is suitable to detect
new possible solutions in the whole design space. The local search tries to improve a single design
without discovering new regions. In Figure 3.12: Convergence of the Evolutionary Algorithm (p. 39),
both search strategies are compared.

Figure 3.12: Convergence of the Evolutionary Algorithm

Convergence of the evolutionary algorithm with global search (left) and local search (right) for the damped
oscillator with noisy objective function.

The figure indicates, that the global search, which starts with a random start population, generates
designs in the whole design space while the designs generated with the local search method stay
close to the start design. Due to the applied random search strategies in evolutionary algorithms the
optimizer may not converge very close to the global optimum always. For example, the optimum
found for the damped oscillator by using the global search (m = 0.81 kg, k = 50.0 N/m) is not as good
as the results of the ARSM optimizer. For this reason it is often useful to use the evolutionary algorithms
to detect the region of the global optimum and do further improvements with other optimization
methods.
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Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired optimization method developed by (Kennedy
and Eberhart 1995 (p. 89)) that imitates the social behavior of a swarm. Information about preferred
positions will be transmitted to other individuals of the swarm such that they move into directions
of previous optimal positions. In nature an individual can be represented by a bird, bee or fish. An
overview of modifications and improvements of this class of algorithms can be found e.g. in (Engel-
brecht 2005 (p. 89)) and (Poli et al. 2007 (p. 90)).

Figure 3.13: Particle Swarm Optimization

Update of a particle position  in the Particle Swarm Optimization using a combination of the

old velocity , the direction to the local best position  and the direction to the global best

position .

PSO starts with initializing a population of size µ where each individual represents a possible solution
of the optimization problem. Swarm intelligence is influenced by two main components representing
the personal and global behavior. This means that each individual remembers its personal best solution
and will also be influenced by the best solution of the swarm. Each individual will change its position
xi  into the direction of its personal best found position Pi  and the global best found position Pg .

(3.6)

There are three important parameters that influence the speed and spread of the swarm. The inertia
weight w is a scaling factor for the velocity of the previous iteration step k. The personal acceleration
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coefficient cp  is a scaling factor for the second term, which is also called cognitive component. The

third term, called social component, is scaled by the global acceleration coefficient cg . R1 and R2 are

two vectors of random numbers uniformly chosen from [0, 1].

The choice of suitable coefficients cp , cg  and w is very important for the convergence behavior of

the PSO. optiSLang provides two predefined search strategies with default values for each coefficient.
A local search strategy is recommended if the user has preliminary information about the optimization
space and has already found a pre-optimized design. In this case the swarm movement is slower and
less intensive throughout all generations. In a predefined global search strategy the swarm movement
is very intensive at the beginning and will be damped throughout the optimization process by de-
creasing the weights of the previous velocity and the cognitive component and increasing the weight
of the social component. In that way a global exploration is reached in the first iterations and exploit-
ation is possible in last iterations.

To allow a more sophisticated search, optiSLang enables the same mutation methods that are available
for evolutionary algorithms. For executing a classical PSO search one has to deselect the mutation
operator. The global best solution is recorded in the archive and is updated at the end of each iteration
step. In the presence of constraint conditions the global best solution is found by taking the feasible
solution with minimal objective value. If there are only infeasible solutions in the first population the
global best will taken as the individual with least constraint violations.

The PSO works similarly to the evolutionary algorithms for optimization problems with a large amount
of failed designs. It is less efficient compared to evolutionary algorithms if discrete design variables
and many constraint conditions are investigated. For optimization tasks with continuous design
variables the PSO converges generally very close to the global optimum. Similar to evolutionary al-
gorithms, the choice of a qualified start population e.g. from sensitivity analysis may significantly
improve the efficiency of the algorithm.

Stochastic Design Improvement

Stochastic Design Improvement (SDI) is a local, single-objective optimization procedure that improves
a proposed design by using a simple stochastic approach without having extensive knowledge about
potential relationships in design space. Based on an initial start design, a start population of size µ is
generated by an uniformly distributed Latin Hypercube Sampling within a given range. In each iteration
step, the best design is taken as new center point for the sampling of the next iteration as shown in
Figure 3.14: Stochastic Design Improvement (p. 42). The ranges of the sampling scheme are adapted
in each iteration step. Depending on the optimization problem the whole population might move
into a better region and achieve an improvement in each step. All individuals of one iteration will be
compared concerning objective and constraints by using the parameter-free constraint handling
method applied in the evolutionary algorithms. The algorithm converges if either a maximum number
of iterations was reached, if a specified improvement with respect to the initial design was reached
(gained improvement) or if a specified deterioration of the performance between two iteration steps
was observed.
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Figure 3.14: Stochastic Design Improvement

Update scheme of the Stochastic Design Improvement approach by generating a random sampling
around the best design of a previous iteration.

Due to its pure stochastic approach the SDI is very robust and works for a high amount of failed
designs, discrete and continuous parameters, and a high number of design variables and constraint
conditions. Nevertheless, it was designed to improve an initial design but not to find global optimal
solutions. For this reason its efficiency may be significantly lower compared to evolutionary algorithms
and Particle Swarm Optimization.

3.2. Multi-Objective Optimization

Most real-world optimization problems include more than one objective and a large number of design
variables. This leads to the general formulation of the multi-objective optimization problem

(3.7)

with  as the vector of design variables and the constraints of inequality  and

equality . All solutions which comply with both constraints and variable bounds form the feasible

n-dimensional design space. Each solution x is assigned to a vector  describing
one point of the M -dimensional objective space. This is the major difference to the single-objective
optimization problem where there is only one objective. The mapping between design space and ob-
jective space is illustrated in Figure 3.15: Design Space (Left) and Objective Space (Right) (p. 43).
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Figure 3.15: Design Space (Left) and Objective Space (Right)

Several procedures have been developed to solve a multi-objective optimization problem (Branke et
al. 2008 (p. 89)). They are classified in non-interactive and interactive methods. In non-interactive
methods the multi-objective optimization problem is transferred into a single-objective problem. This
can be done e.g. by choosing a preferred objective function and introducing the remaining objectives
as constraints

(3.8)

Another possibility is to combine all objectives in a single function by using individual weights wi

(3.9)

Both methods require good knowledge about the optimization potential with respect to each objective
function and a clear idea about the importance of the different objectives with respect to each other.

In early stages of the design process such information are often rare and a transformation of the multi-
objective task into a single objective task is not possible a priori. In such cases interactive methods are
more promising. In optiSLang Pareto optimization as one of the most popular interactive methods is
available.

In Figure 3.16: Recommended Flowchart for Multi-Objective Optimization (p. 44), the recommended
flow for a multi-objective optimization procedure is shown: initially the inputs, possible objectives and
constraint functions are defined. Sensitivity analysis is used to detect unimportant parameters and to
check the objective functions with respect to possible conflicts. Afterwards, a multi-objective optimization
is performed to determine the optimization potential within the conflicting objectives and to derive
suitable weighting factors for a following single-objective optimization. Finally this single-objective
optimization determines an optimal design.
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Figure 3.16: Recommended Flowchart for Multi-Objective Optimization

3.2.1. Pareto Optimization

Pareto Optimality

Solving the multi-objective optimization problem requires a criterion which regards the distinct ob-
jectives. One possible criterion is the Pareto dominance which is formulated for two decision vectors
a and b in the design space X as follows:

• Solution a ∈ X dominates solution b ∈ X if it is feasible and better or equal in all objectives and
better in at least one objective.

• Solution a ∈ X is indifferent to solution b ∈ X if none of both solutions dominates the respective
other.

Using the dominance criterion allows for creating a partial order between different decision vectors
as illustrated in Figure 3.17: Pareto (p. 45). A solution is Pareto optimal if there is no decision vector
that would improve one objective without causing a deterioration in at least one other objective. In
other words a solution is Pareto optimal if it is not dominated by any other solution. The term Pareto
is named after Vilfredo Pareto, an Italian economist who used the concept in his studies of economic
efficiency and income distribution.

If all objectives are equally important and no preferences are made a priori, the dominance of a
solution is the only way to determine if it is better than others. As a result the non-dominated subset
out of the feasible set of solutions constitutes the Pareto set. The corresponding points in the objective
space are called Pareto frontier.
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Figure 3.17: Pareto

Pareto dominating (filled circles) and dominated designs (unfilled circles) including the resulting
Pareto frontier of two conflicting objectives. (a and b dominate c but are indifferent to each other)

The following requirements concerning the multi-objective optimization can be formulated:

• Find a set of solutions close to the Pareto optimal solutions (convergence).

• Find solutions which are diverse enough to represent the whole Pareto frontier (diversity).

Although the optimization produces a set of Pareto optimal solutions, the user is interested in getting
only one solution. Additional preferences have to be introduced, which needs comprehensive know-
ledge about the problem, to select a solution that meets the requirements.

Analysis of Conflicting Objectives

In order to obtain different trade-off solutions there must be conflicting objectives. The results of a
preceding sensitivity analysis should be used to check the objective functions concerning possible
conflicts.

In case of the oscillator example the damped eigen-frequency is used as second objective function
which should be minimized. The anthill plots of the samples used for the sensitivity analysis and
design exploration are shown in Figure 3.18: Conflicting Objectives (p. 46). The figure indicates that
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the minimization of the maximum amplitude is in conflict with the minimization of the damped eigen-
frequency. In the anthill plot all Pareto dominant designs can be identified. Further information can
be gained by subdividing the Pareto optimal designs in the objective space in clusters which are in-
vestigated with respect to their region in the design space. The figure indicates e.g. that the designs
of cluster 2 are highly concentrated in the objective space but widely distributed in the design space.
Furthermore, all Pareto optimal designs are close to the design space boundaries.

Figure 3.18: Conflicting Objectives

Conflicting objectives of the damped oscillator (maximum amplitude vs. eigen-frequency) including
cluster analysis of the Pareto optimal designs in the objective space (left) and in the design space
(right).

Multi-Objective Population-Based Methods

The application of evolutionary algorithms for solving multi-objective optimization problems has been
established over the past two decades. The parallel search for a set of Pareto optimal solutions is the
major advantage of this method. The optiSLang implementation is based on the Strength Pareto
Evolutionary Algorithm 2 (SPEA2) (Zitzler et al. 2001 (p. 90)) and is characterized by the following
principles:

• Elitism is applied by using an archive of non-dominated individuals.

• Fitness assignment is based on the dominance criterion.

• Preservation of population diversity is realized by density estimation.

The algorithm starts with the random or manual initialization of the first population of size µ followed
by the evaluation of all individuals. For the first generation λ (number of parents) individuals are se-
lected out of the population for reproduction. After the evaluation of all newborns both archive indi-
viduals and offspring are assigned new fitness values. The α best solutions form the archive of the
next generation. The optimization stops if the maximum number of generations has been reached
or the archive stagnated.
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The Particle Swarm Optimization algorithm can also be applied to multi-objective optimization
problems. As mentioned for single-objective PSO optiSLang selects the fittest design as global leader.
For the next iteration step the swarm will move in this direction. In multi-objective optimization the
fitness evaluation is different from the single-objective approach.

In contrast to the single-objective nature inspired optimization methods, fitness assignment of the
multi-objective EA and PSO always regards the whole population, because the criterion is based on
the comparison of individuals. The fitness assignment method is a dominance-based ranking which
takes into account by how many individuals a solution is dominated and how many individuals a
solution dominates. To preserve the diversity of the Pareto frontier an additional criterion is introduced
to the fitness assignment procedure. The distance of an individual to its k-th nearest neighbor serves
as an estimator of density. The intention is to prefer solutions in less crowded regions of the objective
space such as boundary solutions.

Figure 3.19: Pareto Frontier

Pareto frontier for the damped oscillator (left) and Pareto optimal designs plotted in the design
space (right) obtained by evolutionary algorithms.

In Figure 3.19: Pareto Frontier (p. 47), the resulting Pareto frontier of the multi-objective evolutionary
algorithm is shown for the damped oscillator example. The Pareto frontier shows a good agreement
with the Pareto optimal designs from Figure 3.18: Conflicting Objectives (p. 46). The Pareto frontier
can now be used to judge about the importance of the different optimization goals and to choose
a suitable optimal design. The efficiency of the multi-objective optimization methods can be dramat-
ically improved especially for high-dimensional optimization problems by choosing a suitable start
population instead of a pure random generation. Selected designs of a sensitivity analysis or previous
optimization runs shall be used for this purpose.
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Chapter 4: Robust Design
Due to target-oriented, automatic optimization of virtual products new design possibilities are explored.
However, highly optimized designs lead to high imperfection sensitivities and tend to loose robustness.
Often the deterministic optimum is pushed to the boundaries of the feasible design space. As a result
the optimized design, which was found by assuming deterministic model properties, may not be realizable
in a production process. For this reason it is necessary to investigate, how the optimized design is affected
by scattering model input variables, which could be e.g. geometry and material parameters, boundary
conditions and loads. The scattering inputs can be modeled within optiSLang by means of scalar random
variables having a certain dependence between each other. Random variables have the advantage
compared to other uncertainty models, that efficient methods of the well developed probability theory
can be applied.

A robust design may be characterized intuitively in that way, that its performance is largely unaffected
by random perturbations of the model inputs. A possible measure is the variance indicator, where the
relative variations of the critical model responses are compared to the relative variation of the input
variables. If certain model responses are limited with respect to an undesired performance, the safety
margin can be quantified as the interval between the mean value of the model response and the limit.
This is shown in Figure 4.1: Safety Margin (p. 50). The safety margin can be formulated in terms of the
standard deviation of the model response. In the variance-based robustness analysis a specific safety
margin , which has to be defined by the designer, has to be proven for all critical responses

(4.1)

Alternatively the probability that a certain limit is exceeded can be quantified and proven to be less
than an acceptable value. This probability indicator can be eval- uated by the probability-based robustness
analysis, often called reliability analysis.
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Figure 4.1: Safety Margin

Random model response with given limit value and corresponding safety margin and failure probability
.

4.1. Definition of Uncertainties

See the following sections:

4.1.1. Scalar Random Variables

4.1.2. Multivariate Distributions

4.1.1. Scalar Random Variables

Random variables are scalar quantities which may be represented by a set of discrete values, each
having a specific probability, or by continuous variables defined in a given range. A continuous random
variable X is described by the cumulative distribution function

(4.2)

where P [X < x] is the probability that X is lower than a given value x.
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Figure 4.2: Cumulative Distribution Function and Probably Density Function

Cumulative distribution function  and probability density function  of a continuous

random variable X.

Equivalent to the cumulative distribution function often the probability density function, which is the
derivative of the cumulative distribution function, is utilized

(4.3)

In Figure 4.2: Cumulative Distribution Function and Probably Density Function (p. 51), the cumulative
distribution function and the probability density function of a continuous random variable are shown
exemplary.

Based on the density function, stochastic moments have been introduced, see for example (Bucher
2009). The first, absolute moment of a random variable X is its mean value

(4.4)

where E[·] is the expected value. The second, central moment of a random variable is its variance

(4.5)

Mean value and variance (or standard deviation ) are typically used to describe the variation

of a random variable. However, even the shape of the distribution function may have a significant
influence on the results of a stochastic analysis. Specific distribution types have been proposed during
the last centuries. The most famous is the normal (Gaussian) distribution. Other common distribution
types are e.g. uniform, log-normal, exponential, Gumbel, and Weibull distributions. In optiSLang a
large number of well-known distribution types is available. The probability density functions and
properties are given in Distribution Types (p. 80). Further details on distribution types of random
variables can be found for example in (Montgomery and Runger 2003 (p. 90)) and (Bucher 2009 (p. 89)).

In order to perform a robustness analysis, optiSLang requires the definition of distribution types in-
cluding mean value and standard deviation for all random input variables. Since the stochastic
properties of the inputs have a significant influence on the results of a robustness analysis, the user
is requested to consider as much information as possible for this purpose. If measurements should
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be considered, the statistic post processing of optiSLang can be used to estimate the stochastic mo-
ments and to find a suitable distribution type.

Additionally to mean value and standard deviation often higher order moments of random model
responses and even of random inputs are of interest. Skewness  and kurtosis  are the standardized
third and fourth moments of a random variable

(4.6)

They provide a description of the shape of a random variable density function in addition to mean
value and standard deviation. For example, for symmetric density functions the skewness is always
zero and for the normal distribution the kurtosis is equal to three. In Figure 4.3: Density Functions
with Corresponding Skewness and Kurtosis Values (p. 52), several density functions are shown together
with corresponding skewness and kurtosis values.

Figure 4.3: Density Functions with Corresponding Skewness and Kurtosis Values

Probability density function  of a continuous random variable X for different values of

skewness  and kurtosis .

4.1.2. Multivariate Distributions

It is typical for industrial applications to investigate the influence of a large number of random input
variables. Modelling these input variables as independent is a simplification, but often the consideration
of dependencies between inputs has a significant influence on the results obtained. For example,
material properties like the Young’s modulus and yield stress may not vary independently. In optiSLang
dependent random variables are modeled with help of the coefficient of correlation

(4.7)

In the following, the random input variables of an investigated model are col- lected in a random
vector X. The joint probability density function is used to quantify the probability of a specific com-
bination of values of inputs. In the case that all random variables Xi  are independent from each

other, then the joint probability density is the product of the single (marginal) density functions.

(4.8)
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Note that independent variables are always uncorrelated, while the contrary is not always true. For
normally distributed input variables X g  the joint density function reads

(4.9)

where  is the vector of mean values,  is the covariance matrix and n is the number of random
variables. The combination of arbitrary distribution types is not possible in closed form. In optiSLang,
the combination of correlated variables with arbitrary distribution types is realized by using the Nataf
model (Nataf 1962 (p. 90)).

First, the single original random variables are transformed to Gaussian ones. For the assumed joint
normal probability density, the coefficients of correlation differ from the original values, they have
to be found by iteration. It may happen in special cases that the iteration yields a not positive definite,
hence invalid matrix of correlation coefficients. In (Bucher 2009 (p. 89)), further details about this
procedure can be found.

Figure 4.4: Random Samples of a Two-Dimensional Random Vector

Samples of a log-normal – normal distributed random vector obtained by the Nataf model: in the
original space (left) and in the normal space (right).

In Figure 4.4: Random Samples of a Two-Dimensional Random Vector (p. 53), random samples of a
two-dimensional random vector with a normal and a log-normal distribution type are shown. The
transformed samples in the normal space can be compared to the identical samples in the original
space. This indicates, that although linear dependencies are assumed in the normal space, non- linear
dependencies can be represented in the original space.

4.2. Variance-Based Robustness Analysis

In variance-based robustness analysis the variations of the critical model responses are investigated. In
optiSLang random sampling methods are used to generate discrete samples of the joined probability
density function of the given random variables. Based on these samples, which are evaluated by the
solver similarly as in the sensitivity analysis, the statistical properties of the model responses as mean
value, standard deviation, quantiles and higher order stochastic moments are estimated. In order to
obtain a sufficient quality of these estimates, it is required, that the sampling scheme represents the
marginal distributions of the single random variables as well as the defined correlations between each
other with high accuracy. Some very basic stochastic methods to generate sample sets are variants of
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the Monte-Carlo method. The simplest version is the so-called plain Monte-Carlo method (PMC). With
this methods the natural scatter can be modeled quite well, but the statistical uncertainty is fairly large
if the sample size is small. Therefore optiSLang provides Latin Hypercube Sampling (LHS) with minimized
correlation errors (Hungtington and Lyrintzis 1998 (p. 89)), where the marginal distributions and the
predefined input correlations are represented with a small number of samples.

Based on the estimates of the mean value and the standard deviation the safety margin can be estimated
by using Equation 4.1 (p. 49) for the responses where a performance limit is given. However, by using
variance-based robustness analysis only safety margins up to two sigma can be proven with a small
number of samples. For larger safety margins (e.g. six sigma) the true failure rate may be heavily vary
for different distribution types of the output. Since the distribution of the output is not exactly known,
an estimate of low failure probabilities by variance-based measures may be very inaccurate. Therefore,
safety margins larger than three sigma should be proven by reliability analysis.

Additional to the variation of the response, the mean value could be an indicator regarding the robustness
of a design. If the mean value estimated by the samples strongly differs from the deterministic reference
value, the influence of the input uncertainties and potentially of solver inaccuracies is significant.

Figure 4.5: Noisy Model Outpot and Convergence Behavior

Representation of a noisy model output by a smoothing approximation (left) and convergence
behavior of the explained variation in the case of a robust and non-robust model (right).

In order to quantify the sources of the response variation, in optiSLang variance-based sensitivity
measures are estimated within the robustness analysis. For this purpose the Meta-model of Optimal
Prognosis presented in Metamodel of Optimal Prognosis (p. 18) is applied. If the solver output contains
unexplainable effects due to numerical accuracy problems, the MOP approximation will smooth these
noise effects as shown in Figure 4.5: Noisy Model Outpot and Convergence Behavior (p. 54). If this is
the case, the CoP value of the MOP can be used to estimate the noise variation as the shortcoming of
the CoP to 100% explainability. However, the unexplained variation may not be caused by solver noise
only, but also by a poor approximation quality. This problem should be analyzed by increasing the
number of samples in the case of low explainability. If the CoP does not increase, then this is an indic-
ator for unexplainable solver behavior.
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Figure 4.6: Flowchart of Variance-Based Robustness Analysis Available in optiSLang

In Figure 4.6: Flowchart of Variance-Based Robustness Analysis Available in optiSLang (p. 55), the overall
flow of the variance-based robustness analysis provided by optiSLang is illustrated. Based on the initial
definition of random variables, optimized samples are generated and evaluated by the solver. The
solver results are used to estimate the statistical properties and to perform a sensitivity analysis with
help of the MOP approach. If the design does not fulfill the robustness requirements, the sensitivity
indices help to identify these input variables, where a reduction of the uncertainty is most effective
with respect to the variation of the model responses.

Exemplary, the variance-based robustness evaluation is performed at the deterministic optimum of the
damped oscillator introduced in Single-Objective Optimization (p. 27). The mass m, the spring stiffness
k, the damping ratio D and the initial kinetic energy Ekin  are considered as independent random variables.

Their mean values and coefficients of variation (CV) are taken as follows

(4.10)

100 Latin Hypercube samples, which are shown in Figure 4.7: Variance-Based Robustness Analysis of
the Damped Oscillator (p. 56), are evaluated. As robustness requirement the safety margin of the mean
eigen-frequency to a given limit ωlimit = 8.5 1/s shall be larger or equal 4.5 sigma, which is equivalent

to a failure probability of 3.4 · 10−6 for a normal distribution. Furthermore, the mean values and the
relative variation of the model responses as well as their explained variations are statistically evaluated.

In Figure 4.8: Statistical Properties of the Oscillator Responses and Input Sensitivities Obtained with
Variance-Based Robustness Analysis (p. 58) the statistical properties of the maximum amplitude and
the damped eigen-frequency are visualized. The figure indicates, that the coefficient of variation of the
maximum amplitude is larger (11%) as the largest CV of the input variables. Furthermore, the mean

value is almost one sigma larger as the deterministic value (  = 0.25 m). Both facts could be inter-

preted as indicators for a non-robust design in terms of the objective.
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Figure 4.7: Variance-Based Robustness Analysis of the Damped Oscillator

100 Latin Hypercube samples used for the variance-based robustness analysis of the damped oscillator.

As result of the MOP-based sensitivity analysis the damping ratio has the largest contribution to the
variation of the maximum amplitude. The Coefficient of Prognosis indicates an explained variation of
92% which is smaller as the CoP obtained with the optimization variables, which was 99%. Since the
robustness analysis considers in this example a much smaller variation in the random inputs as the
sensitivity analysis in the optimization variables, the nonlinearity in the model response should be reduced
in the smaller space. The decrease of the CoP in that case indicates an increasing importance of solver
noise which is caused by the coarse time discretization of the oscillator response. The statistical evaluation
of the damped-eigen-frequency results in a CV of 2.7% which is in the range of the input variation.
Furthermore, the CoP indicates an excellent explainability of 100% for this model response. Nevertheless,
the require safety margin of 4.5 sigma is not reached. The mean value and the standard deviation given
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in Figure 4.8: Statistical Properties of the Oscillator Responses and Input Sensitivities Obtained with
Variance-Based Robustness Analysis (p. 58) can be used to estimate this safety margin, which is only
2.3 sigma. From the viewpoint of the safety requirements, the design found by the deterministic optim-
ization procedures does not fulfill the robustness criteria. In that case, that the input uncertainties could
not be reduced, the optimum should be moved back into the safe region until the safety requirements
are fulfilled. This strategy is realized in the Robust Design Optimization presented in the next section.

4.3. Robust Design Optimization

In Robust Design Optimization (RDO) a CAE model is optimized under consideration of robustness cri-
teria. In optiSLang an iterative variance-based RDO procedure is available. In this procedure determin-
istic optimization is utilized by considering safety factors within the constraint conditions. These safety
factors should be chosen in that way, that the robustness requirements are fulfilled.
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Figure 4.8: Statistical Properties of the Oscillator Responses and Input Sensitivities Obtained with
Variance-Based Robustness Analysis

Generally the safety factors are not known a priori. In this case the user specifies a suitable initial guess
and the initial deterministic optimization is performed. Additionally the robustness criteria are evaluated
at the optimal design found by the optimizers. If the robustness requirements are not fulfilled, the op-
timization constraints are adjusted in a next step and the deterministic optimization procedure and the
corresponding robustness analysis are performed again. This procedure is repeated until the robustness
requirements are fulfilled. In Figure 4.9: Flowchart of Iterative Variance-Based Robustness Design Optim-
ization with optiSLang (p. 59), the flowchart of the iterative RDO procedure is shown.
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Figure 4.9: Flowchart of Iterative Variance-Based Robustness Design Optimization with optiSLang

The iterative RDO procedure is illustrated by means of the oscillator example. Within the initial robustness
analysis discussed in Variance-Based Robustness Analysis (p. 53) a safety margin of 2.3σ has been
reached. In a next step the optimization constraint is adapted as

(4.11)

which leads to the optimal design shown in Figure 4.10: Iterative Robust Design Optimization (p. 60).
By means of the second robustness analysis using 100 samples the required safety margin of 4.5σ was
proven. In case, that two iteration steps are not sufficient, in the third and following steps the constraints
values can be linearly interpolated between the values of the previous steps by considering the obtained
and the required safety margins. Generally, this procedure ends with an acceptably design within three
or four iteration steps. If small failure probabilities are required, the estimate using the safety margin
may be very inaccurate. In such a case, a final reliability analysis shall be performed to prove the required
probability.
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Figure 4.10: Iterative Robust Design Optimization

Robustness Analysis (100 LHS)Optimization (ARSM)

Safety
Margin

Sigma
ω

Mean ω|X|maxωkmConstraint

2.33σ0.218.000.2507.9950.00.78ω≤ 8.0Step1

4.75σ0.207.540.2697.5549.70.87ω ≤ 7.6Step2

Iterative Robust Design Optimization of the damped oscillator using 2 steps to obtain 4.5σ safety margin.
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Chapter 5: Reliability Analysis
Quality or safety requirements on a product necessitate to take scattering influences into account. These
influences can be external (random loads or operation conditions) or inherent in the product itself (like
scattering material properties or production tolerances). If the failure rate is small, as it is typical for
safety considerations, then the usual framework, which is also established by codes (Eurocode EN
1990 (p. 89) ), is the probabilistic safety assessment. The variance-based robustness evaluation, or sigma-
level approach, (Equation 4.1 (p. 49)), may not be sufficient, since it is just a one-dimensional consider-
ation and relies on the assumption of normal distribution.

Within the framework of probabilistic safety assessment or reliability analysis, the scattering influences
are modelled as random variables, which are defined by distribution type, stochastic moments and
mutual correlations, see Definition of Uncertainties (p. 50). The result of the analysis is the complementary
of reliability, the probability of failure, which can be represented on a logarithmic scale.

In the following sections, the definition of the probability of failure will be given first. optiSLang offers
a variety of methods to compute it, with different ranges of application, which will be introduced then.

5.1. Definition of the Reliability Problem

The first tasks of a reliability analysis are to specify the random input variables with their properties, i.e.
distribution types, stochastic moments and correlations (see Definition of Uncertainties (p. 50) and
Distribution Types (p. 80)) and to formulate the requirements on the product to be analyzed. The failure
criterion does not necessarily indicate collapse of the system, any state of the system that violates
quality, serviceability or safety requirements can be formulated as follows: A function of the input random
variables g(x) scaled such that

(5.1)

is called limit state function. g(x) = 0 marks the transition from the safe state to the failed state and is
called failure surface (Madsen, Krenk, and Lind 1986 (p. 90)). Often the limit state function cannot be
formulated directly depending on input random variables, but is implicitly given by the result of a
simulation of the examined system.

This is called an implicit limit state. A typical example is g(r, s) = r -s with r, the resistance (ultimate
stress) and s, computed stress of a structure.

With this definition, the space of all involved variables  can be separated into the safe domain and
the failure domain

(5.2)

The probability of failure Pf  is the probability of the event that x falls into the failure domain.

(5.3)
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and can be computed as the integral of the joint density of all random variables over the failure domain

(5.4)

Figure 5.1: Reliability Problem in Two Dimensions (p. 62) helps to visualize these definitions for the case
of two random variables.

The limit state function may comprise several failure criteria. Two basic cases are demonstrated in the
following. A system consisting of several components which fails entirely, if just one of its components
fails, is called a series system or weakest link system. (Think of a chain under tension.) The probability
of failure for the case of independent single failure modes is

(5.5)

and the limit state function is computed as

(5.6)

Figure 5.1: Reliability Problem in Two Dimensions

Sketch of the reliability problem in two dimensions. f X(x): joint prob- ability density, g(x): limit state

function, g(x) = 0: limit state surface.
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A parallel system, in contrast, has redundancy. The system fails when all components have failed. (E.g.,
a wire rope.) Then

(5.7)

(5.8)

When setting up a reliability analysis in optiSLang, always the safe case, g(x) > 0 is formulated. If several
criteria are given by several lines in the limit states table, they are automatically interpreted as series
system.

5.2. Standardization and Generation of Random Numbers

In particular for problems involving more than one random variable, and/or different failure criteria
which are considered simultaneously, a proper scaling of the variables is important for numerical stability
of the computations. By the linear transformation

(5.9)

with  and , the mean and standard deviation of X, respectively, Y has mean value zero and standard

deviation one. For a random vector X of possibly correlated random variables, the covariance matrix

CXX  has to be decomposed to the form CXX = LL T  e.g. by the Cholesky algorithm. Then

(5.10)

is a random vector with zero means, unit standard deviations and zero correlations.

Many reliability algorithms are based on standardized normal random variables U. These are produced
by the algorithm and have to be transformed back to the real-world variables X in order to evaluate
the simulated system with the random input. For this purpose, the marginal distributions and correlations
are defined and the Nataf model, as introduced in Multivariate Distributions (p. 52), is established in
advance. Then by applying the inverse standardization on a realization u and then the inverse Nataf
transformation, the sample x in original space is obtained.

5.3. First Order Reliability Method (FORM)

The First Order Reliability Method or FORM (see The Hasofer and Lind Reliability Index in Madsen, Krenk,
and Lind 1986 (p. 90)) is a well established method for reliability calculation (Eurocode EN 1990 (p. 89)).
It provides an analytical solution based on assumptions and simplifications. Therefore, it fast to compute,
but in special cases it may be not accurate. The method provides no measure of accuracy (such as, e.g.
a confidence level).

The FORM result is defined in the space of standard normal variables U, thus suitable transformations
are required, see the previous section. If the mean vector  is transformed such, it coincides with the

origin of the U-space.
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Figure 5.2: Linearisation at the Design Point

Table 5.1: Values β For Different Probabilities of Failure

10-710-610-510-410-310-210-1Pf

5.204.754.263.723.092.331.28

The geometrical distance from the origin of the U-space to any point on the transformed failure surface
g'(u) = 0 corresponds to the respective distance between mean vector and failure surface in original
space, as expressed by multiples of standard deviations. The point on the failure surface with largest
probability density corresponds to the smallest distance, which is denoted as the reliability index

(5.11)

Figure 5.2: Linearisation at the Design Point (p. 64) illustrates this geometrical interpretation. Hence the
algorithm has to find the point with minimal distance to the origin of U-space. This is the so-called

design point u *. It can be found by any optimization algorithm (Bucher 2009 (p. 89)).

If the limit state function is linearized at the design point, the corresponding probability of failure can
be computed as

(5.12)

where  is the standard normal cumulative distribution function. This solution is exact only for the
special case that the failure surface is linear in U-space.
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The success of the method depends largely on the success of the optimization algorithm, so the same
requirements as for optimization tasks hold. If a gradient-based optimizer is applied, the limit state
function (in U-space) must be continuous and sufficiently smooth. The design point must be unique. If
the failure surface is not linear at the design point, then the failure probability computed by linearization
may become inaccurate. However, this inaccuracy is overlaid by other sources of uncertainty and dimin-
ishes to some extent with increasing distance.

Generalized Reliability Index

If the probability of failure is computed by any other method than FORM, the reliability index can be
obtained from inversion of Equation 5.12 (p. 64). This so-called generalized reliability index is a scaled
representation of the probability of failure. See (Madsen, Krenk, and Lind 1986 (p. 90)) for further con-
siderations on this topic. Table 5.1: Values β For Different Probabilities of Failure (p. 64) lists typical
values of the relation β vs. Pf  .

5.4. Monte Carlo Simulation

An indicator function is introduced into Equation 5.4 (p. 62), which adopts the value one if the system,
examined for a random parameter set, is in a state considered as failure,and zero else. Formally:

(5.13)

After setting this indicator into the integral over the failure domain, the integration domain can be
changed without influencing the value of the integral. The resulting notation suggests that the integral
can be interpreted as expected value of the indicator I(g(x)).

(5.14)

The concept of Monte Carlo simulation is simply to generate a sample of random vectors x i , submit

each sample to the simulation of the examined system as input parameter set and compute the limit
state function. Then the average of the sample of indicator values is computed as an estimator of the
expected value and therefore of the probability of failure.

(5.15)

In the above, x i  is the i th realisation in a sample of size m. It can be proven that  is an unbiased

estimator for the probability of failure.

An estimator which depends on random inputs is a random variable itself. The variance of this estimator
is defined as (Rubinstein 1981 (p. 90))

(5.16)

It can be computed approximately from the sample and will approach zero for .

65
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Monte Carlo Simulation



The smaller the variance, the more trustworthy is the estimate. The estimator standard deviation nor-
malized to the sample size,

(5.17)

is also referred to as standard error.

The plain Monte Carlo method is the most general and robust way to compute the probability of failure,
yet an inefficient one. The required sample size (and thus the number of solver calls) does not depend

on the dimension, but on the expected failure probability. If, for example, a failure probability of 

shall be computed with a coefficient of variation of 10%, a required sample of size m = 105 is derived
from Equation 5.16 (p. 65).

5.5. Importance Sampling

Since the variance of the estimator for Pf  corresponds to its confidence, variance reduction techniques

aim at influencing the sampling such that the estimator variance becomes smaller, the confidence in-
tervall narrower, hence the estimate of Pf  becomes more accurate. A widely used technique is the Im-

portance Sampling. The principle is to guide the sampling with any a priori information, such that the
ratio of failure events to the total sample size increases. This of course is an intentional influence of the
statistics, which has to be corrected to warrant unbiasedness of the estimator.

Samples are not generated following the prescribed density f X , but with a sampling density denoted

as h Y. Setting h Y/h Y into the integral (Equation 5.14 (p. 65)) does not change its value, but the integral
can be interpreted as expected value within a population Y.

(5.18)

The estimator now includes the correction term, also called importance sampling weight:

(5.19)

This estimator can also be proved to be unbiased and consistent (Rubinstein 1981 (p. 90)).

5.5.1. Adaptive Sampling (ADSAP)

Many variants have been developed which shall on one hand reduce the estimator variance most
efficiently, on the other hand be robust and versatile for a large range of applications. One such Im-
portance Sampling technique is the Adaptive Sampling by Bucher, 1988 (see Bucher 2009 (p. 89)).

The procedure involves several simulation runs. For the first step, the sampling density may have
larger scatter than originally defined for the input parameters. The samples which fell into the failure
domain  in the first run are statistically evaluated: The result serves to define a multi-
dimensional normal type simulation density hY(Y) for the subsequent importance sampling run:

(5.20)
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(5.21)

A third run (that is, a second adaptation) should be performed to prove stability of the result.

A theoretically 'ideal' sampling density which would reduce the estimator variance to zero (Rubinstein
1981 (p. 90)) is approximated in the second moment sense by this procedure. The Adpative Sampling
technique has a large range of applications, including not-differentiable and noisy limit state functions.
Since the effort required to compute a covariance matrix increases quadratically with dimension n,
it may become ineffective in high dimensions. If the user has an idea about the expected reliability
index, it is recommended to use this as a scaling factor of the sampling standard deviation in the first
run.

Example: Parabola

The properties of the Adaptive Sampling method shall be illuminated by a simple example. The random
variables are

and the limit state is a parabola:

The limit state function is smoothly non-linear, the design point is not unique. For the Adaptive
Sampling procedure in optiSLang, three runs with 1000 samples each were performed. The standard
deviations were scaled by a factor of three in the first run. Figure 5.3: Parabola Example: Anthill Plots
of Subsequent Adaptive Sampling Runs (p. 68) shows how the sampling densities are adapted in the
subsequent runs.

5.5.2. Importance Sampling Using the Design Point (ISPUD)

The ISPUD strategy (Bourgund and Bucher 1986 (p. 89)) is to center the sampling density at the failure
surface in the region of highest probability density. For this purpose, a searching procedure analogous
to FORM (First Order Reliability Method (FORM) (p. 63)) is applied.
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Figure 5.3: Parabola Example: Anthill Plots of Subsequent Adaptive Sampling Runs

The sampling density h Y  has a mean vector defined by the design point transformed back to original

space. Distribution types, variances and correlations are taken over from the definitions of the original
random parameters.

(5.22)

(5.23)

Figure 5.4: Parabola Example: Anthill Plot of Importance Sampling Using the Design Point (p. 68)
shows the ISPUD sampling for the same example of a parabola, as it is introduced in Adaptive Sampling
(ADSAP) (p. 66).

As for FORM, the success of the optimization step is crucial also for this method. At present, the
gradient-based NLPQL algorithm is used, so the limit state function has to be sufficiently smooth,
continuous, with a unique design point. If the design point can be determined correctly, ISPUD can
overcome inaccuracies due to the linearization, which is typical for FORM.

Figure 5.4: Parabola Example: Anthill Plot of Importance Sampling Using the Design Point
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5.6. Directional Sampling (DS)

The variance of the estimator for the probability of failure can be reduced by in troducing analytical
partial solutions. This is done in the Directional Sampling procedure (Deák 1980 (p. 89)), (Bjerager
1988 (p. 89)). The original random variables are trans- formed into the space of standard Gaussian
variables. A random vector in standard Gaussian space is represented in polar coordinates

(5.24)

with A being a unit vector, and R the Euclidian norm of U. With this, Equation 5.4 (p. 62) can be re-
written as

(5.25)

Due to the transformation of the standard Gaussian variables from Cartesian into polar coordinates, the
unit vectors A are uniformly distributed over the surface of a hypersphere with radius 1, centered at

the origin. The radii R are independent of A and follow a X 2-distribution with k degrees of freedom, k
being the dimension.

The procedure is to generate unit vectors a i, for each of which the distance of the failure surface to

the origin  is found by a suitable iteration. Then the conditional probability of failure given a direction
ai is computed as

(5.26)

and the total failure probability is the mean of the conditional failure probabilities with respect to the
random vectors A.

(5.27)

(5.28)

A basic prerequisite for Directional Sampling is, that the mean vector of the original random variables

 has to lie within the safe domain, and the limit surface in each direction shall be unique. Failure
should be formulated in a way that the iteration is able to operate in the failure domain (no premature
exit from the solver). However, because of the monotonic decrease with increasing distance to the
mean vector of the joint density function, a non-unique failure surface may be acceptable, as long as
the closest root of  is found.
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Figure 5.5: Parabola Example: Anthill Plot of Directional Sampling Procedure

The Directional Sampling method is sensitive towards dimension. It does not put any requirements on
smoothness nor continuity of the limit state function. Moreover, the implementation in optiSLang is
able to handle a moderate number of unsuccessful solver calls.

Figure 5.5: Parabola Example: Anthill Plot of Directional Sampling Procedure (p. 70) shows the Directional
Sampling results for the parabola example introduced in Adaptive Sampling (ADSAP) (p. 66). A bisection
algorithm is used to iterate the failure surface. The iteration does not exceed a distance to the mean
vector of eight standard deviations.

5.7. Adaptive Response Surface Method (ARSM-DS) for Reliability Analysis

Like in optimization, it seems attractive to substitute the solver responses by a surrogate model in order
to save computation time for the solver calls in the reliability analysis, or to afford more function eval-
uations of the surrogate. It should be mentioned that accuracy requirements are higher in reliability
analysis as compared to optimization. Early approaches (Faravelli 1989 (p. 89)), (Bucher and Bourgund
1990 (p. 89)) are based on classical Response Surface Methodology (RSM) using systematic designs of
experiments (DoE) and polynomial regression models.

In the current optiSLang implementation, supports are generated by Latin Hypercube Sampling in the
first step. The approximation model is of Moving Least Squares type, see Metamodel of Optimal Pro-
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gnosis (p. 18). The probability of failure is computed by Directional Sampling, applied on the surrogate
model.

Figure 5.6: Parabola Example: Response Surface and Directional Sampling Generated by Adaptive
Response Surface Procedure

Directional Sampling yields points on the failure surface of the surrogate model  (x0)=0. It is assumed

that these points are already close to the "true" failure surface. Hence in the subsequent steps, these
points are updated by passing the input values to the solver and computing the respective responses.
The flexibility of the Moving Least Squares model does not require regular DoE schemes as supports
and allows for a local improvement in the region of interest, i.e. close to the failure surface.

The accuracy of this method depends largely on the quality of the surrogate model. It is measured as

the R 2 predicted value computed by a "leave one out" algorithm. The Adaptive Response Surface
method proves to be very efficient and accurate for a wide range of applications, but typically, the effi-
ciency decreases with increasing dimension.

??? (p. 71) shows the moving least squares model and an anthill plot for the parabola example (Adaptive
Sampling (ADSAP) (p. 66)). The anthill plot comprises supports of the response surface and samples of
the directional sampling procedure. The additional supports can be observed near the "Designs on
Limit State Surface".
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5.8. Recommendations for Robustness Wizard

Table 5.2: Range of Application of Different Qualified Reliability Methods (p. 72) provides an overview
of reliability algorithms implemented in optiSLang along with some recommendations for application.

Table 5.2: Range of Application of Different Qualified Reliability Methods

Number of Solver
Runs

Number of
Paramenters

Failure
Domains

Non-LinearityApproach

>10^4 (3 sigma)manyarbitraryarbitraryMonte Carlo SImulation

>10^7 (5 sigma)

1000-5000<= 10arbitraryarbitraryDirectional Sampling

500-1000<= 10one dominantarbitraryAdaptive Importance
Sampling

200-500<= 20one dominantmonotonicFORM, SORM, ISPUD

200-500<= 20few dominantcontinuousAdaptive Response Surface
Method

The robustness wizard in optiSLang helps with the decision of which method to choose. If the robustness
analysis is set up with help of this wizard, there is a dialog in which some information has to be provided
by the user as follows:

• Uncertainty knowledge: Unaware | Estimated | Qualified

• Failed designs: None | Seldom | Frequently

• Solver noise: None | Some | Strong

• Sigma level: Range  set by slider

The number of stochastic parameters and defined limit states is already known to the program. The
response is given as a traffic light in the list of algorithms to choose from, see Figure 5.7: Dialog of the
Robustness Wizard (p. 73). The green color marks the recommended method, red is discouraged. A
method marked yellow can be chosen by the experienced user, this should be done with care. If no
limit state is defined and/or the uncertainty knowledge is unaware or estimated, then the recommend-
ation is "Robustness sampling", i.e. a variance based robustness analysis.
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Figure 5.7: Dialog of the Robustness Wizard

Dialog of the robustness wizard: recommendation of an algorithm dependent on characterization
of the robustness task.
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Appendix A. DOE Schemes

Deterministic DOE Types

Table 1: Deterministic Design of Experiment

DescriptionImageName

Full factorial • Number of input parameter: k ≥ 1
(continuous and discrete)

• Number of levels: p ≥ 2

• Number of samples: n  = pk

• Linear terms

• Mixed terms

• Quadratic terms if p ≥ 3

This DOE generates all possible combinations
of discrete input values

Full
Combinatorial

• Number of input parameter: k ≥ 1

• Number of discrete values pi

for each dimension Xi

• Number of samples:

• Linear terms

• Mixed terms

• Quadratic terms if all pi  ≥ 3
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DescriptionImageName

Star points • Number of input parameter: k  ≥ 1
(continuous and discrete)

• Number of levels: p  ≥ 1

• Number of samples: n = 1 + 2pk

• Linear terms

• Quadratic terms

Central
composite

• Number of input parameter: k  ≥ 2
(continuous and discrete with ≥ 3 values)

• Number of samples: n = 1 + 2k + 2k

• Linear terms

• Mixed terms

• Quadratic terms

Box-Behnken • Number of input parameter: k ≥ 3
(continuous and discrete with ≥ 3 values)

• Number of samples: n  = 2k(k −1) + 1

• Linear terms

• Mixed terms

• Quadratic terms

D-optimal
linear

• Number of input parameter: k  ≥ 1
(continuous and discrete)

• Number of samples:

• Linear terms
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DescriptionImageName

D-optimal
quadratic

• Number of input parameter: k ≥ 3
(continuous and discrete with ≥ 3 values)

• Number of samples:

• Linear terms

• Mixed terms

• Quadratic terms

D-optimal
customized

• Number of input parameter: k  ≥ 1
(continuous and discrete)

• Number of samples:

• Linear terms

Koshal
linear

• Number of input parameter: k  ≥ 1
(continuous and discrete)

• Number of samples: n = 1 + k

• Linear terms

Koshal
quadratic

• Number of input parameter: k ≥ 1
(continuous and discrete with ≥ 3 values)

• Number of samples:

• Linear terms

• Mixed terms

• Quadratic terms
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Appendix B. Random Variables

See the following sections:

B.1. Statistical Moments and Process Capability

B.2. Distribution Types

B.1. Statistical Moments and Process Capability

Table 1: Statistical Moments of a Random Variable

EstimatorExpected ValueMoment

Mean
value

Standard
deviation

Skewness

Excess
kurtosis

Statistical moments of a random variable: definition by expected values and statistical estimators for a
given sample set.

Table 2: Process Capability Indices

Process capability indices considering the lower specification limit LSL, upper specification limit USL,

the target value T as well as the sample mean  and sample standard deviation .
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B.2. Distribution Types

Table 3: Discrete Distribution Types

DescriptionImageName

Distribution parameterDiscrete
distribution

• n pairs of:

• Value xi

• Probability 

Mean value and standard deviation

•

•

Probability mass function

•

Distribution parameterBernoulli
distribution

• Success probability 0 < p < 1

Mean value and standard deviation

•

•

Probability mass function

•
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Discrete distribution types: distribution parameters, probability mass function , mean value ,

and standard deveation .

Table 4: Continuous Distribution Types

DescriptionImageName

Distribution parameterUniform
distribution

• Lower bound a

• Upper bound b > a

Mean value and standard deviation

•

•

PDF and CDF

•

•

Distribution parameterMulti-uniform
distribution

• n pairs of:

• Value 

•

Mean value and standard deviation

•

•

•

PDF and CDF

•

•
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DescriptionImageName

Distribution parameterLog-uniform
distribution

• Lower bound a > 0

• Upper bound b > a

Mean value and standard deviation

•

•

PDF and CDF

•

•

Distribution parameterNormal
distribution

• Location parameter μ

• Scale parameter s > 0

Mean value and standard deviation

•

•

PDF and CDF

•

•
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DescriptionImageName

Distribution parameterTruncated
normal
distribution • Location parameter μ

• Scale parameter s > 0

• Lower bound a

• Upper bound b

Mean value and standard deviation

•

•

PDF and CDF

•

•

•

•

Distribution parameterLog-normal
distribution

• Normal location parameter μ

• Normal scale parameter s > 0

Mean value and standard deviation

•

•

PDF and CDF

•

•
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DescriptionImageName

Distribution parameterTriangular
distribution

• Lower bound a

• Mode value c > a

• Upper bound b > c

Mean value and standard deviation

•

•

PDF and CDF

•

•

Distribution parameterExponential
distribution

• Scale parameter 

• Shift parameter  

Mean value and standard deviation

•

•

PDF and CDF

•

•
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DescriptionImageName

Distribution parameterWeibull
distribution

• Scale parameter λ > 0

• Shape parameter k > 0

Mean value and standard deviation

•

•

PDF and CDF

•

•

• Γ(·) is the gamma function

Distribution parameterFrechet
distribution

• Scale parameter s > 0

• Shape parameter α  > 2

Mean value and standard deviation

•

•

PDF and CDF

•

•

Distribution parameterGumbel
distribution

• Location parameter μ

• Scale parameter β > 0

Mean value and standard deviation
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DescriptionImageName

•

•

PDF and CDF

•

•

•

• γ is the is the Euler-Mascheroni constant

Distribution parameterBeta
distribution

• Lower bound a

• Upper bound b

• Shape parameter α > 0

• Shape parameter β > 0

Mean value and standard deviation

•

•

PDF and CDF

•

•

•

• B(·,·) is the Beta function

• B(u, ·,·) is the incomplete Beta function
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DescriptionImageName

Distribution parameterLambda
distribution

• Location parameter λ1

• Scale parameter λ2 > 0

• Shape parameter λ3 > -0.25, λ3 ≠ 0

• Shape parameter λ4 > -0.25, λ4 ≠ 0

Mean value and standard deviation

•

•

•

•

• B(·,·) is the Beta function

PDF and inverse CDF

•

•

•

• CDF is not available in closed form

Continuous distribution types: distribution parameters, probability density function (PDF) , cumu-

lative distribution function (CDF) , mean value , and standard deveation .
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