
CFD EXPERTS
Simulate the Future

WWW.CFDEXPERTS.NET

https://cfdexperts.net/
https://cfdexperts.net/

Ansys Fluent as a Server User's Guide

Release 2021 R2ANSYS, Inc.
July 2021Southpointe

2600 Ansys Drive
Canonsburg, PA 15317 ANSYS, Inc. and

Ansys Europe,ansysinfo@ansys.com
Ltd. are UL

http://www.ansys.com registered ISO
(T) 724-746-3304
(F) 724-514-9494

9001: 2015
companies.

Copyright and Trademark Information

© 2021 ANSYS, Inc. Unauthorized use, distribution or duplication is prohibited.

Ansys, Ansys Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, product, service and feature
names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries located in the
United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark
of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property
of their respective owners. FLEXlm and FLEXnet are trademarks of Flexera Software LLC.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-
ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products
and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement
that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting
laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products
and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions
of that software license agreement.

ANSYS, Inc. and Ansys Europe, Ltd. are UL registered ISO 9001: 2015 companies.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use,
duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc.
software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for Ansys proprietary software
and third-party software. If you are unable to access the Legal Notice, contact ANSYS, Inc.

Published in the U.S.A.

Table of Contents

Using This Manual ... ix
1. The Contents of This Manual ... ix
2. Typographical Conventions ix
3. Mathematical Conventions xii

1. Introduction . 15
1.1. Overview 15
1.2. Limitations 17
1.3. Installation Requirements 17

1.3.1. Server Machine 17
1.3.2. Client Machine 17

2. Fluent as a Server Session Management . 19
2.1. Fluent as a Server Sessions 19

2.1.1. Starting Fluent In Server Mode 19
2.1.1.1. Startup Options 19
2.1.1.2. Steps To Start Server Mode From Fluent Launcher 21
2.1.1.3. Steps to Start Fluent in Server Mode From the Command Line 23

2.1.2. Fluent as a Server Keyfile ... 23
2.2. Connecting to Fluent In Server Mode 24

3. Fluent Remote Console . 25
3.1. Using the Fluent Remote Console 25

3.1.1.The Fluent Remote Console Window 26
3.1.2.The Fluent Output Window 29

3.2. Fluent Remote Console Commands 30
3.2.1. File Session Manager Commands (fsm.) .. 30
3.2.2. Fluent as a Server Commands (fluent.) .. 30
3.2.3. Fluent TUI Commands (tui.) .. 36
3.2.4. Remote File and Shell Commands 36

3.3. Fluent Remote Console Example 38
4. Fluent as a Server Software Development Kit (SDK) . 53

4.1. Requirements 53
4.2. Fluent as a Server CORBA Interfaces 54

4.2.1. ICoFluentUnit ... 54
4.2.2. ICoFluentSchemeController ... 56
4.2.3. Exceptions 57
4.2.4. aaS Commands (aaS.) .. 58

4.2.4.1. Instant Commands 58
4.2.4.2. Collaborative Commands 61

4.2.5. Using the CORBA Interfaces 62
4.2.6. Using Interactive Prompting 63

4.3. Procedure for a Creating a Simple Fluent as a Server Client Application 64
4.4. A Fluent Client Example 65

4.4.1. Procedure 66
4.4.2. Summary 73
4.4.3. Code Listing 73

4.5. OLGA-Fluent Coupling 75
4.5.1. Requirements 76
4.5.2. Procedure 76
4.5.3. Leader-Side Libraries ... 77

4.5.3.1. Fluent as a Server DLL 77

iii
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

4.5.3.2. OLGA OPC Connector DLL 77
4.5.3.2.1. Libraries ... 77

4.5.4. Follower-Side Connectors ... 80
4.5.4.1. Fluent as a Server ... 80
4.5.4.2. OLGA OPC Connector 80

4.5.5. OLGA-Fluent Coupling Examples 81
4.5.5.1. OLGA OPC Example Code 81

Index 85

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.iv

Fluent as a Server User's Guide

List of Figures

1.1. Fluent as a Server System Schematic ... 16
3.1. Fluent Remote Console Window 26
3.2. Fluent Remote Console Connected to Fluent Session 28
3.3. Fluent Output Window 29
4.1. Leader/FollowerModel ... 75
4.2. OLGA-Fluent Coupling Implementation 76

v
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.vi

List of Tables

1. Mini Flow Chart Symbol Descriptions ix

vii
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.viii

Using This Manual
This preface is divided into the following sections:

1.The Contents of This Manual

2.Typographical Conventions

3. Mathematical Conventions

1. The Contents of This Manual

The Ansys Fluent As A Server User’s Guide documents the Ansys Fluent As A Server capability which
allows remote connection to, and control of, Fluent sessions. In this manual you will find an overview
of the capability, a description of how to set up and use Fluent as a Server, and examples.

2. Typographical Conventions

Several typographical conventions are used in this manual’s text to help you find commands in the
user interface.

• Different type styles are used to indicate graphical user interface items and text interface items.
For example:

Iso-Surface dialog box

surface/iso-surface text command

• The text interface type style is also used when illustrating exactly what appears on the screen
to distinguish it from the narrative text. In this context, user inputs are typically shown in boldface.
For example,

solve/initialize/set-fmg-initialization

 Customize your FMG initialization:
 set the number of multigrid levels [5]

 set FMG parameters on levels ..

 residual reduction on level 1 is: [0.001]
 number of cycles on level 1 is: [10] 100

 residual reduction on level 2 is: [0.001]
 number of cycles on level 2 is: [50] 100

• Mini flow charts are used to guide you through the ribbon or the tree, leading you to a specific
option, dialog box, or task page. The following tables list the meaning of each symbol in the
mini flow charts.

Table 1: Mini Flow Chart Symbol Descriptions

Indicated ActionSymbol

Look at the ribbon

ix
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Look at the tree

Double-click to open task page

Select from task page

Right-click the preceding item

For example,

Setting Up Domain → Mesh → Transform → Translate...

indicates selecting the Setting Up Domain ribbon tab, clicking Transform (in the Mesh group
box) and selecting Translate..., as indicated in the figure below:

And

Setup → Models → Viscous Model → Realizable k-epsilon

indicates expanding the Setup and Models branches, right-clicking Viscous, and selecting
Realizable k-epsilon from the Model sub-menu, as shown in the following figure:

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.x

Using This Manual

And

Setup → Boundary Conditions → velocity-inlet-5

indicates opening the task page as shown below:

xi
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Typographical Conventions

In this manual, mini flow charts usually accompany a description of a dialog box or command,
or a screen illustration showing how to use the dialog box or command. They show you how to
quickly access a command or dialog box without having to search the surrounding material.

• In-text references to File ribbon tab selections can be indicated using a "/". For example
File/Write/Case... indicates clicking the File ribbon tab and selecting Case... from the Write
submenu (which opens the Select File dialog box).

3. Mathematical Conventions

• Where possible, vector quantities are displayed with a raised arrow (for example, ,). Boldfaced
characters are reserved for vectors and matrices as they apply to linear algebra (for example, the
identity matrix,).

• The operator , referred to as grad, nabla, or del, represents the partial derivative of a quantity with
respect to all directions in the chosen coordinate system. In Cartesian coordinates, is defined to
be

(1)

 appears in several ways:

– The gradient of a scalar quantity is the vector whose components are the partial derivatives; for
example,

(2)

– The gradient of a vector quantity is a second-order tensor; for example, in Cartesian coordinates,

(3)

This tensor is usually written as

(4)

– The divergence of a vector quantity, which is the inner product between and a vector; for ex-
ample,

(5)

– The operator , which is usually written as and is known as the Laplacian; for example,

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xii

Using This Manual

(6)

 is different from the expression , which is defined as

(7)

• An exception to the use of is found in the discussion of Reynolds stresses in Turbulence in the
Fluent Theory Guide, where convention dictates the use of Cartesian tensor notation. In this chapter,
you will also find that some velocity vector components are written as , , and instead of the
conventional with directional subscripts.

xiii
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Mathematical Conventions

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xiv

Chapter 1: Introduction
Ansys Fluent As A Server is a set of tools and functionality that allows local or remote client applications
to access the full power of the Ansys Fluent solver. A client application can perform case setup, initial-
ization, iteration, and result reporting using the Fluent as a Server interface. Note that this capability is
different from batch mode operation in that commands can be issued to the running session at any
time rather than just from a predefined journal file. This allows solution steering and other manipulations
without exiting from the Fluent session. The client application can be either:

• The Fluent Remote Console, Fluent Remote Console (p. 25)

• A custom application built using the Fluent as a Server Software Development Kit (SDK), Fluent
as a Server Software Development Kit (SDK) (p. 53)

Following are some examples of how Fluent as a Server functionality might be used to run Fluent re-
motely and provide information of interest from a simulation:

Sample Use Cases

• A user performing a Fluent simulation on a local workstation requires assistance with a simulation
from a Subject Matter Expert (SME) at another location. The user’s Fluent session is running with the
Fluent as a Server functionality enabled. The SME uses Fluent Remote Console to connect to the
user’s interactive session and use TUI commands to examine results, change under-relaxation or
model settings, and assist the user in obtaining a solution.

• A custom application for design and layout of aircraft passenger seating configuration needs to ac-
curately predict cooling air velocity around occupants. By incorporating interface methods provided
in the Fluent as a Server SDK, the custom application can connect to Fluent as a Server and run a
simulation to provide contour plots of air velocity.

• An engineer uses process modeling software to predict the output of an entire facility. A schematic
of the overall process is built by linking individual pieces of equipment such as filter presses, reactors,
or flash tanks. Standard engineering calculations are performed for each unit operation. However,
problems arise when a tank reactor cannot be characterized using common assumptions such as
"fully mixed". Using the Fluent as a Server SDK, the process modeling software can be connected to
Fluent as a Server which performs a highly accurate CFD solution in place of the less accurate engin-
eering calculation.

1.1. Overview

The following elements, provided with Ansys Fluent, make up the Fluent as a Server capability:

• The Ansys Fluent application with built-in Internet Inter-ORB Protocol (IIOP) interface

• The Fluent Remote Console client

15
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

• The Fluent as a Server Software Development Kit (SDK) which enables you to build customized
client applications

Figure 1.1: Fluent as a Server System Schematic (p. 16) shows how these elements are used together
to provide client access to the Fluent solver.

Figure 1.1: Fluent as a Server System Schematic

The Fluent as a Server interface in Ansys Fluent exists alongside the Graphical User Interface, the Text
User Interface, and the Batch Mode Interface. It is made available by starting Ansys Fluent in Server
Mode as described in Fluent as a Server Session Management (p. 19). A client connected to the Fluent
as a Server interface can then be used to issue commands remotely to the running Fluent session.

The information necessary to connect to the Fluent as a Server session is stored as an Interoperable
Object Reference (IOR) string in a text file on the server machine when the session is started. This IOR
string is unique to the session and can be used by a client application to read all necessary information
to connect to the Fluent as a Server session (for example, hostname, port number, protocol). For further

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.16

Introduction

details on the Fluent as a Server interface and session management, see Fluent as a Server Session
Management (p. 19).

The Fluent Remote Console is a precompiled client application that you can use to provide Text User
Interface (TUI) commands to a remote Fluent as a Server session. It also supports bi-directional file
transfer so you can transfer case/data files, user-defined functions, output files, and so on to or from
the solver session as required. For further details on the Fluent Remote Console, see Fluent Remote
Console (p. 25).

Alternatively, you can use the Fluent as a Server Software Development Kit (SDK) to build your own
customized client application in any development environment that supports the CORBA protocol. The
SDK is composed of a set of Interface Definition Language (IDL) files that, when compiled with a 3rd
party CORBA compiler, provide a set of libraries that you can include in your application to enable
communication with Fluent as a Server. For details about using the Fluent as a Server Software Devel-
opment Kit, see Fluent as a Server Software Development Kit (SDK) (p. 53).

1.2. Limitations

Note the following limitation:

• All Fluent as a Server commands and most aaS commands cannot be executed until Fluent is idle or
at a stable point. For example, Fluent is not stable while solving for an iteration, but at the end of
the iteration there is a stable point. This means that there may be a lag between when you enter a
command and when you receive a response.

The minimum lag during a solve operation is one iteration, though you may choose settings that
have the effect of increasing it. See Fluent as a Server Commands (fluent.) (p. 30) and Collaborative
Commands (p. 61) for strategies for minimizing this lag for Fluent as a Server commands and aaS
commands, respectively. For a list of aaS commands that can always provide an instant response
(that is, without the possibility of a lag), see Instant Commands (p. 58).

1.3. Installation Requirements

1.3.1. Server Machine

A standard Ansys Fluent installation is all that is required on the server machine to start a Fluent as
a Server solver session that can listen for connections from clients (see Fluent as a Server Session
Management (p. 19)).

1.3.2. Client Machine

You can connect from a client machine using either the Fluent Remote Console, Fluent Remote
Console (p. 25), or your own custom client application built using the Fluent as a Server SDK, Fluent
as a Server Software Development Kit (SDK) (p. 53). Both the Fluent Remote Console and the Fluent
as a Server SDK are included in the standard Fluent installation.

17
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Installation Requirements

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.18

Chapter 2: Fluent as a Server Session Management
This chapter provides information on starting and managing Fluent as a Server solver sessions that can
be accessed by remote client applications.

2.1. Fluent as a Server Sessions

2.2. Connecting to Fluent In Server Mode

2.1. Fluent as a Server Sessions

A Fluent as a Server session is very similar to a conventional stand-alone Fluent session, but with the
addition of an Internet Inter-ORB Protocol (IIOP) interface exposed that accepts connections from suitable
client applications. This capability is different from batch mode operation in that commands can be issued
to the running session at any time rather than just from a predefined journal file. This allows solution
steering and other manipulations without exiting from the Fluent session.

2.1.1. Starting Fluent In Server Mode

You can start Fluent in Server Mode in either of two ways:

• from the Fluent Launcher by specifying particular environment variables.

• from the command line by passing specific options to the Fluent executable. This is useful if
you intend to create a script or batch file to launch Fluent in Server mode.

In either case, the Fluent as a Server session creates a keyfile in the session working directory with
the information necessary for a client to connect to the session. See Fluent as a Server Keyfile (p. 23)
and Connecting to Fluent In Server Mode (p. 24) for details.

Important:

While it is technically possible to start multiple Fluent as a Server sessions in the same
working directory, this is not recommended as it could lead to inadvertent user file conflicts
or corruption. For instance, two users, each running their own simulations, could both at-
tempt to write out contour plots titled pressure_contours.png leading to one user
inadvertently overwriting the other’s file.

2.1.1.1. Startup Options

The startup and behavior of Fluent as a Server can be controlled by several command line options
and environment variables.

19
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Environment Variables

FLUENT_AAS

controls whether to start Fluent in Server mode. If FLUENT_AAS is set to 1, the Fluent session
will be started in Server mode.

Note:

FLUENT_AAS is observed only in the Environment tab of the Fluent Launcher.

AAS_HOST

can be set to an IP address on the server machine to allow connection only from clients with
network access to the specified IP. Connections can be restricted to being from the local machine
only by setting AAS_HOST=localhost. If AAS_HOST is not set, any client with access to at
least one IP address can access the Fluent as a Server session (this is equivalent to having all
possible IPs in the DNS of the server in the AAS_HOST variable). This behavior is useful when
starting Fluent as a Server session using SGE where the IP address of the host machine is not
known in advance.

AAS_PORTS

can be set to a port number or a range of port numbers on which to listen for connections. If
set to a single port number, Fluent will attempt to use that port to listen for connections. You
can specify a range of ports by using the format:

<startport>/portspan=<num>

In this case, Fluent will use the first available in the range of <num> ports beginning with
<startport>. For example, to specify that Fluent should use a port in the range of 1000–1009
you would use:

AAS_PORTS=1000/portspan=10

FLUENT_AAS_KEY_FILE

specifies a name for the keyfile generated when Fluent as a Server is started. This name will
only be used if no name is specified with the —aas_key_file command line option. See
Fluent as a Server Keyfile (p. 23) for details.

Command Line Options

—aas

instructs Fluent to start in server mode. See Steps to Start Fluent in Server Mode From the
Command Line (p. 23).

—aas_key_file

can be used to specify the name of the key file generated by Fluent as a Server containing
connection information for the session. See Fluent as a Server Keyfile (p. 23).

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.20

Fluent as a Server Session Management

2.1.1.2. Steps To Start Server Mode From Fluent Launcher

To start Fluent as a Server from the Fluent Launcher, perform the following steps:

1. Start Fluent Launcher and configure dimensionality and options as you normally would (see
Starting and Executing Ansys Fluent in the Getting Started Guide).

2. Click the Show More Options button to expand the Launcher settings (if necessary).

3. Open the Environment tab in the expanded Fluent Launcher window.

4. Set the FLUENT_AAS and, optionally, AAS_HOST and FLUENT_AAS_KEY_FILE environment
variables.

21
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent as a Server Sessions

a. Enter FLUENT_AAS=1 in the Other Environment Variables field.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.22

Fluent as a Server Session Management

Setting FLUENT_AAS=1 instructs Fluent to start in Server Mode. If FLUENT_AAS is
omitted or is set to 0, Fluent will start without entering Server Mode and the Fluent as a
Server IIOP interface will not be available.

Important:

The FLUENT_AAS environment variable is only respected when specified
inside Fluent Launcher. Setting FLUENT_AAS as a shell environment
variable will have no effect.

b. Optionally enter AAS_HOST=<IP Address> in the Other Environment Variables field
(see Startup Options (p. 19)).

c. Optionally enter FLUENT_AAS_KEY_FILE=<keyfile-name> in the Other Environment
Variables field (see Startup Options (p. 19)).

5. Click OK.

2.1.1.3. Steps to Start Fluent in Server Mode From the Command Line

To start Fluent as a Server from the command line, perform the following steps:

1. Optionally set the shell environment variable AAS_HOST to an IP address on the server machine
on which Fluent should listen for client connections (see Startup Options (p. 19)).

2. Use the following commands to start Fluent in Server Mode:

• On Windows platforms:

C:\> fluent.exe <options> -aas

• On Linux platforms:

> fluent <options> -aas

These command lines assume that the fluent executable is in your path. You may use any
<options> you normally would to specify which solver to load (for example 2d, 2ddp,
3d, 3ddp), the number of processors to use, and so on. For details on available command
line options, see Command Line Startup Options in the Fluent Getting Started Guide.

2.1.2. Fluent as a Server Keyfile

As described in Starting Fluent In Server Mode (p. 19), when you start a Fluent as a Server session, a
keyfile is created in the session working directory that contains the information required for a client
application to connect to the session. The keyfile is simply a text file containing an Interoperable
Object Reference (IOR) string that contains encoded information about the host, port number, and
protocol for connecting to the Fluent as a Server session.

The keyfile will be named according to the first value from the following hierarchy:

23
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent as a Server Sessions

1. the name specified with the Fluent command line option, —aas_key_file=<keyfilename>.

2. the value of the FLUENT_AAS_KEY_FILE environment variable.

3. the default name, aaS_FluentId.txt.

If the desired keyfile name already exists and refers to a running Fluent as a Server session, the new
Fluent as a Server session will fail to start. This is to prevent inadvertently overwriting a keyfile that
may be needed by another user.

Important:

While it is technically possible to start multiple Fluent as a Server sessions in the same
working directory by specifying different keyfile names, this is not recommended as
it could lead to inadvertent user file conflicts or corruption. For instance, two users,
each running their own simulations, could both attempt to write out contour plots
titled pressure_contours.png leading to one user inadvertently overwriting the
other’s file.

Note that spaces are allowed in the filepath of the keyfile, even though typically Fluent text commands
cannot access such filepaths. For example, the following File Session Manager command would not
return an error: fsm.connect_to_session "C:/Path With Spaces/aaS_FluentId.txt".

2.2. Connecting to Fluent In Server Mode

Once a Fluent Server Mode session is running it is available for connections from local or remote client
applications that have network access to the server machine.

In order to connect to the Fluent session, you will need access to the IOR string contained in the keyfile
for the session (see Fluent as a Server Keyfile (p. 23)). Because the keyfile is simply a text file, any con-
venient means of copying the file, or its contents, to a location accessible to the client machine can be
used.

The Fluent Remote Console, Fluent Remote Console (p. 25), is a pre-built client provided with Ansys
Fluent that can be used to connect to Fluent Server sessions and fully control the simulation using TUI
commands. It includes a command to read the IOR string from a specified Fluent as a Server keyfile.

Alternatively, you can connect using your own client that has been built with the Fluent as a Server
CORBA interfaces, ICoFluentUnit and ICoFluentSchemeController, that are supplied as part
of the Fluent as a Server SDK (see Fluent as a Server Software Development Kit (SDK) (p. 53) for details
on creating a client application and connecting to Fluent as a Server).

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.24

Fluent as a Server Session Management

Chapter 3: Fluent Remote Console
The Fluent Remote Console is a client application that allows you to connect to a Fluent as a Server
session on a local or remote machine, potentially running a different operating system. Once connected
to a Fluent session the Remote Console provides an interface similar to the interactive Fluent TUI interface.
The user can send TUI commands from the Remote Console and receive the text output from the Fluent
session in an output window as well as load and retrieve input and output files.

This chapter includes the following sections.

3.1. Using the Fluent Remote Console

3.2. Fluent Remote Console Commands

3.3. Fluent Remote Console Example

3.1. Using the Fluent Remote Console

The Fluent Remote Console executable is installed in the Fluent install tree.

It can be run either interactively or in batch mode. You can start it from the command line using the
following commands:

On Windows Platforms

C:\> \Program Files\ANSYS Inc\V212\fluent\fluent21.2.0\launcher\<arch>\flconsole.exe

On Linux Platforms

> /ansys_inc/v212/fluent/fluent21.2.0/launcher/<arch>/flconsole

Command Line Options

On both Windows and Linux platforms, the following command line options are available:

-i <input_file>.fcj

specifies a journal file, <input_file>.fcj, that contains Fluent Remote Console and
TUI commands to be executed in batch mode.

Important:

Due to the additional commands available in Fluent Remote Console, this
journal file is not generally of the same format as a Fluent journal file.

25
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

-o <output_file>.fct

specifies an output transcript file, <output_file>.fct, to which output from Fluent
Remote Console will be written.

Important:

This transcript file is not generally of the same format as a Fluent transcript
file.

-nogui

used in batch mode to specify that Fluent Remote Console should run without displaying
the Fluent Remote Console or Fluent Output windows.

3.1.1. The Fluent Remote Console Window

When started interactively (that is, without the -nogui command line option), the Fluent Remote
Console window appears, Figure 3.1: Fluent Remote Console Window (p. 26).

Figure 3.1: Fluent Remote Console Window

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.26

Fluent Remote Console

Commands are entered at the Fluent Remote Console command prompt, >. Session management
output is displayed in the Fluent Remote Console. Fluent as a Server simulation output may be dis-
played either in the Fluent Remote Console window or in the Fluent Output window (The Fluent
Output Window (p. 29)) depending on verbosity settings (Fluent as a Server Commands (flu-
ent.) (p. 30)).

Typically, the first step after launching Fluent Remote Console is to connect to a running Fluent as a
Server session. You can do this using the fsm.connect_to_session command:

>fsm.connect_to_session <path to keyfile>

As discussed in Fluent as a Server Keyfile (p. 23), each Fluent as a Server session creates a unique
keyfile, by default named aaS_FluentId.txt, which contains connection information for clients
to use. The fsm.connect_to_session command uses the information in this file to initiate a
connection to Fluent as a Server. You can also choose a session keyfile using the File → Open... menu
command.

Note:

The session keyfile can be found in the working directory of the Fluent as a Server
session and can be copied to another location (perhaps on the client machine) if
convenient.

Once connected, Fluent Remote Console will display a connection message and, if a case file is already
loaded on the server, the status of any input/output parameters that exist, Figure 3.2: Fluent Remote
Console Connected to Fluent Session (p. 28). The Fluent Output Window will also open and will display
output from the remote server TUI console.

27
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Using the Fluent Remote Console

Figure 3.2: Fluent Remote Console Connected to Fluent Session

Commands are entered at the prompt in the Fluent Remote Console and, by default, output will be
directed back to the Fluent Remote Console. You can optionally direct output to the Fluent Output
Window using the fluent.set_silent command in the Fluent Remote Console. See The Fluent
Output Window (p. 29) for details.

The available command set in the Fluent Remote Console depends on the connection status. At any
time you may press <Tab> to see a context-sensitive list of currently available commands (or command
completions if you have already entered some characters).

Commands in Fluent Remote Console fall into the following categories:

• File Session Management commands (prefixed by fsm.)

• Fluent as a Server commands (prefixed by fluent.)

• Fluent TUI commands (prefixed by tui.)

• Remote File and Shell Commands

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.28

Fluent Remote Console

For detailed descriptions of all the commands available in the Fluent Remote Console, see Fluent
Remote Console Commands (p. 30). To exit the Fluent Remote Console you can type exit at the
prompt. Note that this will not terminate any connected Fluent as a Server instances.

For a complete example of using Fluent Remote Console to perform a simulation see Fluent Remote
Console Example (p. 38).

3.1.2. The Fluent Output Window

The Fluent Output Window, Figure 3.3: Fluent Output Window (p. 29), displays the contents of the
remote Fluent as a Server session TUI console. Based on the verbosity settings of the Remote Console,
this may include output from commands issued from Fluent Remote Console.

Figure 3.3: Fluent Output Window

By default, TUI output from remote commands issued to the Fluent as a Server session from Fluent
Remote Console are displayed in the Fluent Remote Console window. If you prefer to have the output
displayed in the Fluent Output window you can issue the fluent.set_silent command in the
Fluent Remote Console. This will prevent output from tui.* and fluent.* commands from ap-
pearing in the Fluent Remote Console window. The output will instead be directed to the remote
server TUI console and mirrored in the Fluent Output Window on the local client machine. You can

29
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Using the Fluent Remote Console

direct output back to the Fluent Remote Console using fluent.set_verbose. For further inform-
ation on verbosity settings and output commands, see Fluent as a Server Commands (flu-
ent.) (p. 30)).

3.2. Fluent Remote Console Commands

Commands in Fluent Remote Console are divided into the following categories and namespaces:

3.2.1. File Session Manager Commands (fsm.)

3.2.2. Fluent as a Server Commands (fluent.)

3.2.3. Fluent TUI Commands (tui.)

3.2.4. Remote File and Shell Commands

3.2.1. File Session Manager Commands (fsm.)

File Session Manager commands are used to manage aspects of the local Fluent Remote Console
session and file system. You can connect to Fluent sessions that are listening for connections on the
Fluent as a Server interface by specifying a keyfile (see Fluent as a Server Session Management (p. 19)).

File Session Manager commands begin with the prefix fsm.

fsm.connect_to_session <filename>

connect to a running Fluent as a Server session. <filename> is the path to the Fluent as a
Server keyfile corresponding to the solver session. If <filename> is omitted, a dialog box will
open which allows you to navigate to a file. You can also choose File → Open... from the menu
bar.

fsm.cd <directory>

change the current local directory to <directory>. If <directory> is omitted, a dialog box
will open, allowing you to navigate to a directory.

fsm.ls

lists the contents of the current local directory.

fsm.pwd

print the current local directory.

fsm.display_users_guide

opens the Ansys Help. You can also press F1 or choose Help → User’s Guide... from the menu
bar.

3.2.2. Fluent as a Server Commands (fluent.)

Fluent as a Server commands are used to perform client/server interactions with a connected Fluent
as a Server session. These include commands to upload files, set/get rpvar values, alter verbosity, and
so on. Fluent as a Server commands begin with the prefix fluent. Note that for the sake of conveni-

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.30

Fluent Remote Console

ence and accuracy, you do not have to type the whole command, but can begin typing and use the
Tab key to automatically complete it or display a list of options.

The following commands collaborate with Fluent processes and therefore cannot be executed until
Fluent is idle or at a stable point. This means that you are not guaranteed to have an instant response
when you enter the command.

Tip:

The following strategies can be used to minimize the lag between when you enter a
command and when it is executed:

• Set the fluent.set_aaslistening_step_at <number> itera-
tion|timestep command to a minimum value, based on your objectives. Note that
by decreasing the iterations / timesteps between stable points, you are favoring cosim-
ulation over simulation (that is, you are prioritizing your ability to manipulate the settings
over the time it will take to calculate the solution).

• You can nest a number of commands between fluent.pause and fluent.continue
commands, so that they are all executed during the same stable point; otherwise, each
command will have to wait for a separate stable point.

fluent.continue

continues remote execution of a journal file on the Fluent server.

fluent.display_menu

displays a message of the remote TUI menu.

fluent.download_file [-f] <filename>

downloads a file, <filename>, from the remote Fluent session working directory to the local
machine. The file will be downloaded to the local directory from which Fluent Remote Console
was started. By default, fluent.download_file will not overwrite an existing local file. You
can force an overwrite by including the —f flag.

fluent.get_aaslistening_step

provides information about the aaslistener that listens for commands from Fluent as a Server clients.

fluent.get_current_flow_time

provides the current flow time.

fluent.get_current_iteration

provides the current iteration.

fluent.get_current_time_step

provides the current time step.

31
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Commands

fluent.get_dimensionality

provides the dimensionality of the current case.

fluent.get_last_casefile_name

provides the name of the last case file accessed before the current case. This can be useful if you
have written the case file with a new name.

fluent.get_list_input_parameters

provides a list of the input parameters available in the current case.

fluent.get_list_output_parameters

provides a list of the output parameters available in the current case.

fluent.get_nr_input_parameters

provides the number of input parameters available in the current case.

fluent.get_nr_output_parameters

provides the number of output parameters available in the current case.

fluent.get_parameter <parametername>

reports the current value of <parametername>.

fluent.get_paused_index

returns an index indicating the “depth” of pause. When Fluent is not paused, it will return 0. It is
incremented with each successive pause instruction. This can be useful to determine the state of
a session if the connection is lost while Fluent is paused.

fluent.get_precision

specifies whether the solution calculations for the current case will be performed in single- or
double-precision mode.

fluent.get_release

provides the name of the solver and the release number.

fluent.get_status

provides information about the status of the Fluent session (for example, journaling, iterate).

fluent.get_rpvar <rpvarname>

reports the current value of <rpvarname>.

fluent.get_status

provides information about the status of the Fluent session (for example, journaling, iterate).

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.32

Fluent Remote Console

fluent.get_verbosity

displays the current setting of verbosity.

fluent.interrupt

interrupts remote execution of a journal file on the Fluent server. Note that this terminates reading
of the journal file. If you want to be able to resume execution where it was stopped, use flu-
ent.pause.

fluent.list_commands

returns a list of solver calculation activities (including the listening process for Fluent as a Server
commands).

fluent.list_monitors <monitor_type> <monitor_name>

returns a JSON-formatted listing of the monitor definitions in the current case. <monitor_type>
may be one of the following types: residuals, lift, drag, moment, surface, or volume.
If no arguments are given, Fluent returns all defined monitors. If only <monitor_type> is given,
all monitors of the specified type are returned.

fluent.list_monitors_with_persisted_data <monitor_type> <monitor_name> <filter> <filter_value>

returns a JSON-formatted listing of the monitor definitions in the current case, including the data
from the monitor history file (if any). Options for <monitor_type> are the same as those listed
for fluent.list_monitors. <filter> allows you to return incremental monitor data, by
removing the data calculated before the specified <filter_value>; a single command can
include one or more of the following <filter> options: start-flow-time, start-itera-
tion, and start-time-step.

fluent.list_parameters

reports the names and values of the input and output parameters defined in the current case.

fluent.list_report_definitions

returns a JSON-formatted listing of the report definitions in the current case. For more information
about report definitions, see Creating Report Definitions in the Fluent User's Guide.

fluent.list_report_files

returns a JSON-formatted listing of the report file definitions in the current case. If no arguments
are given, Fluent returns all defined report files. For more information about report files, see Report
Files and Report Plots in the Fluent User's Guide.

fluent.list_report_files_with_persisted_data <filter> <filter_value>

returns a JSON-formatted listing of the report file definitions in the current case, including the
data from the report file .out file (if any). For more information about report files, see Report
Files and Report Plots in the Fluent User's Guide. <filter> allows you to return incremental report
file data, by removing the data calculated before the specified <filter_value>; a single
command can include one or more of the following <filter> options: start-iteration
and start-time-step.

33
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Commands

fluent.list_report_plots

returns a JSON-formatted listing of the report plot definitions in the current case. For more inform-
ation about report plots, see Report Files and Report Plots in the Fluent User's Guide.

fluent.list_rpvars

lists all rpvars by name and their current values. This command will not return anything until after
fluent.retrieve_rpvars_info has been issued.

fluent.list_rpvars_regexp ‘<key>’

lists all rpvars matching the specified regular expression, <key>, and their current values. Note
that <key> must be enclosed in single quotes. This command will not return anything until after
fluent.retrieve_rpvars_info has been issued.

fluent.list_rpvars_wildcards ‘<key>’

lists all rpvars matching <key> with wildcard expansion. Use * to match zero or more characters.
Use ? to match exactly one character. Note that <key> must be enclosed in single quotes. This
command will not return anything until after fluent.retrieve_rpvars_info has been issued.

fluent.load_case <filename>

loads a case file over the network connection to the Fluent session. Note that this is different
from the read-case TUI command because it allows you to load a local case file to the remote
session. If <filename> is omitted, a dialog box will open, allowing you to navigate to a file.

fluent.load_data <filename>

loads a data file over the network connection to the Fluent session. Note that this is different
from the read-data TUI command because it allows you to load a local data file to the remote
session. If <filename> is omitted, a dialog box will open, allowing you to navigate to a file.

fluent.pause

pauses remote execution of a journal file on the Fluent server. Execution can be resumed using
the fluent.continue command.

fluent.read_journal

loads a journal and executes it asynchronously (control is immediately returned to the user). The
status of the journal execution can be checked using fluent.get_status.

fluent.retrieve_rpvars_info

retrieves the list of rpvars from the connected Fluent as a Server session. This command must be
issued before the fluent.list_rpvars commands or completion suggestions for flu-
ent.get_rpvar/fluent.set_rpvar will work.

fluent.save_case <filename>

saves a case file from the remote Fluent session on the local machine. Note that this is different
from the write-case TUI command because it allows you to save the case file to the local

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.34

Fluent Remote Console

machine. If <filename> is omitted, a dialog box will open, allowing you to navigate to a file
location.

fluent.save_data <filename>

saves a data file from the remote Fluent session on the local machine. Note that this is different
from the write-data TUI command because it allows you to save the data file to the local
machine. If <filename> is omitted, a dialog box will open, allowing you to navigate to a file
location.

fluent.save_monitors_with_persisted_data <monitor_file_name>

saves a JSON-formatted file on the remote Fluent machine with the data (if it exists) from all
monitors defined in the current case.

fluent.set_aaslistening_step_at <number> iteration|timestep

configures the aaslistener to listen for commands from Fluent as a Server clients every <number>
iterations or timesteps.

fluent.set_auto_save_period_json_monitors <period_in_minutes>

allows you to change the period for when monitor history data is automatically saved as a JSON-
formatted file (named monitor.json) on the remote Fluent machine. By default, the period is
set to 60 minutes. Note that it is recommended that you do not have multiple sessions in a single
folder, as they will all have the same name for the monitor history file.

fluent.set_parameter <parametername> <value>

sets the value of <paramtername> to <value>.

fluent.set_rpvar <rpvarname> <value>

sets <rpvarname> to <value>.

fluent.set_server_questions_silent

disables prompts for TUI commands that are entered without all arguments. Fluent will automat-
ically use the default values for any arguments that are not specified.

fluent.set_server_questions_verbose

enables prompts for TUI commands that are entered without all arguments.

fluent.set_silent

sets the output of TUI commands issued in the Fluent Remote Console to display in the Fluent
Output window instead of in the Fluent Remote Console.

fluent.set_verbose

sets the output of TUI commands issued in the Fluent Remote Console to display in the Fluent
Remote Console instead of in the Fluent Output window. This is the default behavior.

35
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Commands

fluent.terminate

terminates the connected Fluent solver session.

fluent.upload_file [-f] <filename>

uploads a file from the local client machine to the remote Fluent session working directory. If
<filename> is omitted, a dialog box will open, allowing you to navigate to a file. By default,
fluent.upload_file will not overwrite an existing remote file. You can force an overwrite
by including the —f flag.

3.2.3. Fluent TUI Commands (tui.)

Once you have connected to a Fluent session, you will be able to execute the full set of TUI commands
in the Fluent Remote Console as if you are running Fluent locally. For details on the available TUI
commands, refer to the Fluent Text Command List. When issued from the Fluent Remote Console,
these commands are formally prepended with the tui. namespace prefix. However, Fluent Remote
Console treats tui. as the default namespace so it can be omitted. For example, the following
commands in Fluent Remote Console are equivalent:

tui.report summary

report summary

3.2.4. Remote File and Shell Commands

For reasons of convenience and security, shell and file system commands behave differently in Fluent
Remote Console than in an interactive or batch Fluent session. Specifically:

• Execution of arbitrary shell commands (using the ! prefix in the Fluent Text User Interface) is
not supported from the Fluent Remote Console.

• File system commands (for example, ls, chdir, and so on) in the Text User Interface are
overloaded in the Fluent Remote Console with similar commands that are intended to provide
a degree of security against unwanted remote file system access.

• Several additional file system commands are available to manage files in the Fluent as a Server
working directory on the server machine.

The remote file system commands provided in the Fluent Remote Console are restricted to operations
within the Fluent as a Server session working directory and its subdirectories. These commands will
return an error if you attempt to access a file or directory outside of the Fluent as a Server directory.

Warning:

Although the restrictions placed on shell and file system commands in the Remote
Console provide a measure of protection against unwanted remote file system access
and program execution, they cannot guard against every threat and must not be relied
upon for complete security. For example, commands issued from a journal file in the
remote Fluent as a Server session will not be subject to the same restrictions. Therefore,

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.36

Fluent Remote Console

it is important that the Fluent as a Server session is started with appropriate permis-
sions on the remote machine to maximize remote system security.

The available shell and file system commands in Fluent Remote Console are as follows:

Note:

Unless otherwise noted, wildcards are not supported.

tui.ls <name>

list the contents of directory <name>. If <name> refers to a single file, list that file. If <name> is
omitted, list the contents of the current directory.

tui.dir <name>

same as ls

tui.pwd

print the current directory on the server machine. The path is returned relative to the base
working directory of the Fluent as a Server session, which appears as $home. Note that $home
is merely a symbol for the base working directory in the path display. You cannot use $home in
a path specifier with tui.chdir.

tui.chdir <directory>

change to <directory>. If <directory> is omitted, return to the base working directory of
the Fluent as a Server session.

tui.cd <directory>

same as chdir

tui.mkdir <name>

create a new directory called <name>.

tui.rmdir <directory>

delete the directory called <directory>. Note that <directory> must be empty before it
can be deleted.

tui.cp <source> <dest>

copy the file <source> to <dest>. If <dest> exists, it is overwritten. If <dest> is an existing
directory, <source> is copied into <dest>.

tui.copy <source> <dest>

same as cp.

37
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Commands

tui.rename <source> <dest>

rename the file <source> to <dest>. If <dest> exists, it is overwritten. Note that you can
move a file into a directory by forming <dest> as <directory>/<filename>.

tui.delete <file>

delete the file named <file>.

3.3. Fluent Remote Console Example

This example illustrates a typical sequence in which Fluent Remote Console is used to connect to a
running Fluent Server session and perform a remote simulation. It will demonstrate the following basic
tasks:

• Start Fluent Remote Console

• Connect to a Fluent Server session using a keyfile, such as aaS_FluentId.txt file

• Upload a case file from the client machine to the Fluent Server

• Get and set parameter and rpvar values for the simulation

• Use TUI commands to initialize and iterate the solution

• Save the case and data files to the client machine

• End the Fluent session

Note:

This example presumes that a Fluent Server session is running on a local or remote
machine. For details on starting a Fluent Server session, see Starting Fluent In Server
Mode (p. 19).

Example Procedure

1. Start Fluent Remote Console using one of the methods in Using the Fluent Remote Console (p. 25).

C:\>"\Program Files\ANSYS Inc\v212\fluent\fluent21.2.0\launcher\win64\flconsole"

2. Connect to a running Fluent Server session (fsm.connect_to_session).

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.38

Fluent Remote Console

Because a filename was not specified with the fsm.connect_to_session command, a dialog box
opens to select the aaS_FluentId.txt file.

39
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Example

After clicking Open, Fluent Remote Console reports the connection status and lists available parameters.
In this example, no case file is loaded in the Fluent session, so no parameters are available.

3. Load a case file from the local (client) machine (fluent.load_case).

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.40

Fluent Remote Console

Because a filename was not specified with the fluent.load_case command, a dialog box opens
to select the case file.

41
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Example

Fluent Remote Console reports that the case has been loaded. Note that we use the flu-
ent.load_case command which uploads the case file to the server machine prior to it being read
into Fluent.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.42

Fluent Remote Console

The case is loaded into the Fluent session. In this case, the Fluent session was started with graphics
enabled so it displays the mesh as it would if running interactively.

4. Retrieve the current parameter values (fluent.list_parameters).

This case has 3 parameters defined: input MachNumber, and outputs Drag and Lift.

43
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Example

There is not yet any solution data, so Drag and Lift values are reported as 0.000000.

5. Initialize the solution (TUI Command solve initialize hyb-initialization).

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.44

Fluent Remote Console

6. Iterate the solution (TUI Command solve iterate 200).

45
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Example

Fluent iterates until convergence is reached and prints the iteration information to the Fluent output
window.

7. Get the values of Drag and Lift (fluent.get_parameter).

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.46

Fluent Remote Console

8. Change the value of MachNumber and Pressure relaxation (fluent.set_parameter, flu-
ent.retrieve_rpvars_info, fluent.list_rpvars_wildcards, fluent.set_rpvar).

Note:

You must use fluent.retrieve_rpvars_info to update the available rpvars
from Fluent before listing the rpvars for the first time, and any time that new rpvars
are created.

47
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Example

This case uses the Coupled Pressure-Based solver with Pseudo Transient relaxation, so the rpvar pres-
sure-coupled/pressure/pseudo-explicit-relax is chosen.

9. Direct output to the Fluent Output window and update the solution (fluent.set_silent,
solve iterate 200).

10. Report the values of Drag and Lift at MachNumber = 0.7.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.48

Fluent Remote Console

11. Save the case and data files to the client machine (fluent.save_case, fluent.save_data).

49
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Example

Since no filename was specified to fluent.save_case a dialog box opens for you to select a location.
The fluent.save_data command is performed the same way. Note that fluent.save_case
and fluent.save_data allow you to save the case/data files to the local (client) machine.

12. Terminate the Fluent session (fluent.terminate).

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.50

Fluent Remote Console

51
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent Remote Console Example

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.52

Chapter 4: Fluent as a Server Software Development
Kit (SDK)
The Fluent as a Server Software Development Kit (SDK) is included with an installation of Ansys Fluent
or the Fluent as a Server Client Package and allows you to enable your own client application to connect
to and communicate with Fluent as a Server sessions. Using the SDK you can extend or create a client
application to provide whatever level of control over the Fluent as a Server session that your application
requires.

This chapter is divided into the following sections.

4.1. Requirements

4.2. Fluent as a Server CORBA Interfaces

4.3. Procedure for a Creating a Simple Fluent as a Server Client Application

4.4. A Fluent Client Example

4.5. OLGA-Fluent Coupling

4.1. Requirements

In order to use the Fluent as a Server SDK to create client applications that connect to Fluent as a
Server sessions, you will need to ensure you have the following additional tools not supplied with Ansys
Fluent:

• A development environment with native or 3rd party support for Common Object Request Broker
Architecture (CORBA) and a suitable CORBA IDL compiler.

Tip:

3rd-party CORBA implementations are available for a wide variety of common lan-
guages including:

C

C++

Python

Java

OR

• A development environment based on .NET Framework version 3.5 or 4.0.

53
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

4.2. Fluent as a Server CORBA Interfaces

The central element of the Fluent as a Server SDK is a pair of CORBA interfaces that you can use in
building a client application. These are included with an installation of Fluent.

The following sections describe the interfaces and their use:

4.2.1. ICoFluentUnit

4.2.2. ICoFluentSchemeController

4.2.3. Exceptions

4.2.4. aaS Commands (aaS.)

4.2.5. Using the CORBA Interfaces

4.2.6. Using Interactive Prompting

4.2.1. ICoFluentUnit

The ICoFluentUnit interface provides a set of functions that perform typical commands in Ansys
Fluent for solving a CFD simulation case. For example you can load or save case and data files, set
the number of computational iterations, initiate a calculation, get or set defined parameter values,
and so on. An example of a simple client that uses the interface is given in A Fluent Client Ex-
ample (p. 65).

interface ICoFluentUnit

string getComponentName();

returns the name of the connected component

void setComponentName(in string p_szName);

sets the name of the component to p_szName

string getComponentDescription();

returns the description of the connected component

void setComponentDescription(in string p_szDescription);

sets the description of the connected component to p_szDescription

void calculate();

iterates the solution for the number of iterations specified with setNrIterations. This is
mainly for use with steady simulations as it does not perform dual-time iteration. For transient
cases you can issue the solve/dual-time-iterate TUI command using doMenuCommand (see
ICoFluentSchemeController (p. 56))

void setNrIterations(in long p_INrIterations);

sets the number of iterations that calculate will perform to p_INrIterations.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.54

Fluent as a Server Software Development Kit (SDK)

long getNrIterations();

returns the number of iterations currently set for a calculate command to perform

void loadCase(in string p_szCaseFileName);

load the case file p_szCaseFileName from the Fluent working directory into Fluent

void loadData(in string p_szDataFileName);

load the data file p_szDataFileName from the Fluent working directory into Fluent

void saveCase(in string p_szCaseFileName);

save the current Fluent case to p_szCaseFileName in the Fluent working directory

void saveData(in string p_szDataFileName);

save the current Fluent data to p_szDataFileName in the Fluent working directory

long getNrInputParameters();

returns the number of input parameters defined in the current case

string getInputParameterNameByIndex(in long lInputParameterIndex);

returns a string containing the name of the input parameter with index lInputParameter-
Index

void setInputParameterValueByIndex(in long p_lInputParameterIndex, in float
p_lfInputParameterValue);

sets the value of the input parameter with index p_lInputParameterIndex to p_lfIn-
putParameterValue

void setInputParameterValueByName(in string p_lInputParameterName, in float
p_lfInputParameterValue);

sets the value of the input parameter with name p_lInputParameterName to p_lfIn-
putParameterValue

long getNrOutputParameters();

returns the number of output parameters defined in the current case

string getOutputParameterNameByIndex(in long lOutputParameterIndex);

returns a string containing the name of the output parameter with index IOutputPara-
meterIndex

float getOutputParameterValueByIndex(in long p_lOutputParameterIndex);

returns the value of the output parameter with index IOutputParameterIndex

55
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent as a Server CORBA Interfaces

float getOutputParameterValueByName(in string p_lOutputParameterName);

returns the value of the output parameter with name p_IOutputParameterName

void terminate();

terminate the connected Fluent as a Server session

Object getSchemeControllerInstance();

returns an object that can be used to send TUI or scheme commands to the Fluent session
and perform more advanced functions using the ICoFluentSchemeController Interface (see
ICoFluentSchemeController (p. 56))

4.2.2. ICoFluentSchemeController

The ICoSchemeController interface includes functions for more advanced control of a Fluent session,
such as issuing direct Scheme or menu commands and manipulating rpvars. An example of a simple
client that uses the interface is given in A Fluent Client Example (p. 65).

ICoFluentSchemeController

void execScheme(in string p_szSchemeCommand);

issues a scheme command to the connected Fluent session. Output from the command is not
returned.

string execSchemeToString(in string p_szSchemeCommand);

issues a scheme command to the connected Fluent session and returns the output as a string.

void doMenuCommand(in string p_szMenuCommand);

issues a TUI or aaS command to the connected Fluent session (for a list of available commands,
see Fluent Text Command List and aaS Commands (aaS.) (p. 58)). Output from the command
is not returned.

string doMenuCommandToString(in string p_szMenuCommand);

issues a TUI or aaS command to the connected Fluent session and returns the output as a
string. For a list of available commands, see Fluent Text Command List and aaS Commands
(aaS.) (p. 58).

void setRpVar(in string p_szRpVar, in string p_szRpVarValue);

sets the value of the rpvar p_szRpVar to p_szRpVarValue.

string getRpVar(in string p_szRpVar);

returns a string with the value of the rpvar p_szRpVar.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.56

Fluent as a Server Software Development Kit (SDK)

void uploadFileFromBuffer(in string p_szFileName, in CoOctetBuffer p_pFileContent);

writes a file named p_szFileName in the remote Fluent session working directory with the
contents of p_pFileContent. If p_szFileName exists, it is overwritten.

CoOctetBuffer downloadFileFromBuffer(in string p_szFileName);

returns the contents of the file named p_szFileName in the remote Fluent session working
directory.

4.2.3. Exceptions

Interactive Prompting Exceptions

The following exception structures are defined to handle the various interactive questions that Fluent
may respond with if an incomplete command is issued using doMenuCommand() or doMenuCom-
mandToString(). For a description of how to use these in your client application, see Using Inter-
active Prompting (p. 63).

exception EYesNoQuestion
{
 long questionType; # An integer for the type of question:
 # 1 for this type
 string questionPromptWithDefaultAnswer; # The prompt as it would be given in Fluent
 # with the default given in square brackets
 string defaultAnswer; # The default answer by itself
 string questionHelp; # A help message if applicable
 string questionMessage; # The message Fluent would present if the answer
 # given was invalid
}

exception EReadUnquotedString
{
 long questionType; # An integer for the type of question:
 # 2 for this type
 string questionPrompt; # The prompt as it would be given in Fluent
 # (without the default answer)
 string defaultAnswer; # The default answer
 string questionHelp; # A help message if applicable
 string questionMessage; # The message Fluent would present
 # if the answer given was invalid
};

exception EReadQGenericQuestion
{
 long questionType; # An integer for the type of question:
 # 3 for this type
 string questionPromptWithDefaultAnswer; # The prompt as it would be given in Fluent
 # with the default given in square brackets
 string rawDefaultAnswer; # The default answer
 string questionHelp; # A help message if applicable

57
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent as a Server CORBA Interfaces

 string questionMessage; # The message Fluent would present
 # if the answer given was invalid
};

exception EMenuGetQuestion
{
 long questionType; # An integer for the type of question:
 # 4 for this type
 string questionPrompt; # The prompt as it would be given in Fluent
 # with the default given in square brackets
 string questionHelp; # A help message if applicable
 string questionMenu; # A list of items that can be chosen from
};

Error Handling

exception EFluentGenericError
{
 long errorType; # The type of error being returned
 string questionPrompt; # A prompt for user input
 string questionHelp; # A help message if applicable
 string questionMenu; # A list of items that can be chosen from
};

4.2.4. aaS Commands (aaS.)

aaS commands are used to perform client/server interactions with a connected Fluent as a Server
session. These include commands to set/get rpvar values, alter verbosity, and so on. aaS commands
begin with the prefix aaS.

The aaS commands are described in the following sections, and are grouped based on whether they
can provide an “instant” response (because they only require existing data) or whether they must
“collaborate” with Fluent processes and therefore may require a waiting period to respond. Note that
instant commands can be called from a collaborative object, but will not be executed until Fluent is
idle or at a stable point.

4.2.4.1. Instant Commands

4.2.4.2. Collaborative Commands

4.2.4.1. Instant Commands

The following commands can always provide an instant response, as they use existing data and
can be executed even if Fluent is not currently idle or at a stable point.

aaS.get_current_flow_time

provides the current flow time.

aaS.get_current_iteration

provides the current iteration.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.58

Fluent as a Server Software Development Kit (SDK)

aaS.get_current_time_step

provides the current time step.

aaS.get_dimensionality

provides the dimensionality of the current case.

aaS.get_last_casefile_name

provides the name of the last case file accessed before the current case. This can be useful if
you have written the case file with a new name.

aaS.get_list_input_parameters

provides a list of the input parameters available in the current case.

aaS.get_list_output_parameters

provides a list of the output parameters available in the current case.

aaS.get_nr_input_parameters

provides the number of input parameters available in the current case.

aaS.get_nr_output_parameters

provides the number of output parameters available in the current case.

aaS.get_paused_index

returns an index indicating the “depth” of pause. When Fluent is not paused, it will return 0. It
is incremented with each successive pause instruction. This can be useful to determine the state
of a session if the connection is lost while Fluent is paused.

aaS.get_precision

specifies whether the solution calculations for the current case will be performed in single- or
double-precision mode.

aaS.get_release

provides the name of the solver and the release number.

aaS.get_status

provides information about the status of the Fluent session (for example, journaling, iter-
ate).

aaS.list_monitors <monitor_type> <monitor_name>

returns a JSON-formatted listing of the monitor definitions in the current case. <monit-
or_type> may be one of the following types: residuals, lift, drag, moment, surface,
or volume. If no arguments are given, Fluent returns all defined monitors. If only <monit-
or_type> is given, all monitors of the specified type are returned.

59
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent as a Server CORBA Interfaces

aaS.list_monitors_with_persisted_data <monitor_type> <monitor_name> <filter> <filter_value>

returns a JSON-formatted listing of the monitor definitions in the current case, including the
data from the monitor history file (if any). Options for <monitor_type> are the same as those
listed for aaS.list_monitors. <filter> allows you to return incremental monitor data,
by removing the data calculated before the specified <filter_value>; a single command
can include one or more of the following <filter> options: start-flow-time, start-
iteration, and start-time-step.

aaS.list_report_definitions

returns a JSON-formatted listing of the report definitions in the current case. For more inform-
ation about report definitions, see Creating Report Definitions in the Fluent User's Guide.

aaS.list_report_files

returns a JSON-formatted listing of the report file definitions in the current case. If no arguments
are given, Fluent returns all defined report files. For more information about report files, see
Report Files and Report Plots in the Fluent User's Guide.

aaS.list_report_files_with_persisted_data <filter> <filter_value>

returns a JSON-formatted listing of the report file definitions in the current case, including the
data from the report file .out file (if any). For more information about report files, see Report
Files and Report Plots in the Fluent User's Guide. <filter> allows you to return incremental
report file data, by removing the data calculated before the specified <filter_value>; a
single command can include one or more of the following <filter> options: start-iter-
ation and start-time-step.

aaS.list_report_plots

returns a JSON-formatted listing of the report plot definitions in the current case. For more in-
formation about report plots, see Report Files and Report Plots in the Fluent User's Guide.

aaS.save_monitors_with_persisted_data <monitor_file_name>

saves a JSON-formatted file on the remote Fluent machine with the data (if it exists) from all
monitors defined in the current case.

aaS.set_auto_save_period_json_monitors <period_in_minutes>

allows you to change the period for when monitor history data is automatically saved as a
JSON-formatted file (named monitor.json) on the remote Fluent machine. By default, the
period is set to 60 minutes. Note that it is recommended that you do not have multiple sessions
in a single folder, as they will all have the same name for the monitor history file.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.60

Fluent as a Server Software Development Kit (SDK)

4.2.4.2. Collaborative Commands

The following commands collaborate with Fluent processes and therefore cannot be executed until
Fluent is idle or at a stable point. This means that you are not guaranteed to have an instant response
when you enter the command.

Tip:

The following strategies can be used to minimize the lag between when you enter a
command and when it is executed:

• Set the aaS.set_aaslistening_step_at <number> iteration|timestep
command to a minimum value, based on your objectives. Note that by decreasing
the iterations / timesteps between stable points, you are favoring cosimulation over
simulation (that is, you are prioritizing your ability to manipulate the settings over the
time it will take to calculate the solution).

• You can nest a number of commands between aaS.pause and aaS.continue
commands, so that they are all executed during the same stable point; otherwise,
each command will have to wait for a separate stable point.

• For aaS. commands that have an equivalent fluent. command (see Fluent as a
Server Commands (fluent.) (p. 30)), it may be preferable to use the latter: fluent.
commands undergo lexical and semantic checks that ensure you are not needlessly
waiting on a poorly formed command, and allow you to use the Tab key to automat-
ically complete partially typed commands for the sake of convenience and accuracy.

aaS.continue

continues remote execution of a journal file on the Fluent server.

aaS.get_aaslistening_step

provides information about the aaslistener that listens for commands from Fluent as a Server
clients.

aaS.interrupt

interrupts remote execution of a journal file on the Fluent server. Note that this terminates
reading of the journal file. If you want to be able to resume execution where it was stopped,
use aaS.pause.

aaS.pause

pauses remote execution of a journal file on the Fluent server. Execution can be resumed using
the aaS.continue command.

aaS.set_aaslistening_step_at <number> iteration|timestep

configures the aaslistener to listen for commands from Fluent as a Server clients every <number>
iterations or timesteps.

61
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent as a Server CORBA Interfaces

aaS.read_journal

loads a journal and executes it asynchronously (control is immediately returned to the user).
The status of the journal execution can be checked using aaS.get_status.

4.2.5. Using the CORBA Interfaces

There are two ways to include the CORBA interfaces in your client application depending on your
needs and development platform.

Building From Interface Definition Language (IDL) Files

You can build the interface modules for any CORBA-enabled language by compiling the supplied In-
terface Definition Language (IDL) file using a suitable 3rd-party CORBA compiler. The IDL file is provided
in the following location in the Ansys install tree:

v212\fluent\fluent21.2.0\addons\corba\<ARCH>\CoFluentUnit.idl

Refer to the documentation for your CORBA implementation and development environment for details
on how to compile this IDL file and include the resulting modules in your application.

Using the Pre-Built .NET Connector

If you are using .NET for your client application, you can load a pre-built DLL that contains wrappers
for the CORBA interfaces. Two DLLs are available, depending on your version of .NET.

v212\fluent\fluent21.2.0\addons\corba\DotNetFramework35\DotNetCoFluen-
tUnit.dll

v212\fluent\fluent21.2.0\addons\corba\DotNetFramework40\DotNetCoFluen-
tUnit.dll

Including DotNetCoFluentUnit.dll makes available the following classes in the AAS_CORBA
namespace.

DotNetCoFluentUnit

has as methods wrappers for each of the functions listed in ICoFluentUnit (p. 54).

The DotNetCoFluentUnit class also makes available two additional methods.

void ConnectToServerFromIorFile(string p_stringIorFile);

takes as input the name of a Fluent as a Server key file and uses it to instantiate a CORBA
connection to the Fluent server.

DotNetCoFluentSchemeController getDotNetCoFluentSchemeControllerInstance();

returns a Scheme controller object that makes available (through wrappers) the methods listed
in ICoFluentSchemeController (p. 56). When using the .NET connector, this method should
be used rather than directly using the getSchemeControllerInstance method as it handles
typing that may otherwise not be handled correctly.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.62

Fluent as a Server Software Development Kit (SDK)

DotNetCoFluentSchemeController

has as methods wrappers for the functions listed in ICoFluentSchemeController (p. 56).

DotNetCoFluentUnitError

defines an exception for errors returned by the .NET wrappers.

DotNetCoFluentUnitError
{
 long long m_iCode;
 string m_stringDescription;
 string m_stringInterfaceName;
 string m_stringMoreInfo;
 string m_stringName;
 string m_stringOperation;
 string m_stringScope
};

4.2.6. Using Interactive Prompting

Normally, when your client application issues a TUI / aaS command to Fluent using doMenuCommand()
or doMenuCommandToString() Fluent will use default values for any unspecified arguments. You
can instruct Fluent to instead prompt for missing arguments by appending the character sequence
‘<space>-?’ to the command string. For example, the following line would send the report
summary command to Fluent through the CORBA scheme interface and request that Fluent prompt
with questions:

fluentSchemeInterface.doMenuCommandToString(“report summary -?”)

If Fluent requires additional information to execute the command it will throw one of the CORBA
exceptions in Exceptions (p. 57) depending on the type of question. The client can catch the exception
and process it as necessary to respond with the additional information.

Thus, a typical sequence for a client application conducting a dialog with Fluent proceeds as follows:

1. Client sends a command to Fluent with the ‘<space>-?’ sequence appended.

2. Fluent checks whether an argument is required and if so returns a CORBA exception.

3. Client catches the exception and determines how to respond to the question from Fluent.

4. Client reformulates the command with the answer to the question now appended as an ar-
gument (along with ‘<space>-?’) and sends the new command to Fluent.

5. Fluent checks whether an additional argument is required and, if so, returns a CORBA excep-
tion.

6. Steps 3–5 are repeated until Fluent determines that it has a complete command.

63
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluent as a Server CORBA Interfaces

Example Code Block

The following is a sample Python code block showing a basic implementation of exception handling
to receive prompts from a remote Fluent as a Server session and present them to a user operating
the client application. For each prompt with a default answer, if the user presses Enter without entering
any text, the default value is used.

 success=False
 while not success:
 try:
 output=scheme_interface.doMenuCommandToString(''.join([command," -?"]))
 success=True

 except AAS_CORBA.EYesNoQuestion as e:
 moreinfo=raw_input(''.join([e.questionPromptWithDefaultAnswer," "]))
 if not moreinfo:
 moreinfo=e.defaultAnswer
 command=''.join([command," ",moreinfo])
 except AAS_CORBA.EReadUnquotedString as e:
 moreinfo=raw_input(''.join([e.questionPrompt," ","[",e.defaultAnswer,"]"]))
 if not moreinfo:
 moreinfo=e.defaultAnswer
 command=''.join([command," ",moreinfo])
 except AAS_CORBA.EReadQGenericQuestion as e:
 moreinfo=raw_input(''.join([e.questionPromptWithDefaultAnswer," "]))
 if not moreinfo:
 moreinfo=e.rawDefaultAnswer
 command=''.join([command," ",moreinfo])
 except AAS_CORBA.EMenuGetQuestion as e:
 print(e.questionMenu)
 moreinfo=raw_input(''.join([e.questionPrompt," "]))
 command=''.join([command," ",moreinfo])
 except:
 e=sys.exc_info()
 print("Error: %s" % e[0])
 print(e[1])
 sys.exit(1)

4.3. Procedure for a Creating a Simple Fluent as a Server Client Application

The basic steps to create or enable an application to connect to Fluent as a Server are:

Using a CORBA-Aware Language

1. Install a CORBA-compliant ORB implementation suitable for the development environment in which
you will be creating your client application.

2. Use the compiler included with your CORBA implementation to compile the Fluent as a Server in-
terface modules from the Interface Definition Language (IDL) file. The IDL file is located in the fol-
lowing location in the Ansys install tree.

v212\fluent\fluent21.2.0\addons\corba\<ARCH>\CoFluentUnit.idl

3. Create your client project and include the AAS_CORBA module created in the previous step. Refer
to Fluent as a Server CORBA Interfaces (p. 54) for details about the interfaces contained in the
AAS_CORBA module.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.64

Fluent as a Server Software Development Kit (SDK)

The specific source code to use the provided interfaces will depend on your development language
and requirements. In general, a useful client application will:

a. instantiate a CORBA object

b. pass the IOR string contained in the Fluent as a Server session’s keyfile to an ORB method to
create an ICoFluentUnit object

c. use the methods provided in ICoFluentUnit and/or ICoFluentSchemeController to load a case
file, send commands, or retrieve output from the remote Fluent session.

See Fluent as a Server CORBA Interfaces (p. 54) for details about these interfaces and the
provided methods.

4. Start a Fluent as a Server session on a remote machine that is accessible from the client machine
(see Fluent as a Server Session Management (p. 19)).

5. Use the keyfile created by the remote Fluent as a Server session to connect your client application
to Fluent.

Using .NET Framework

1. Create your client project and include DotNetCoFluentUnit.dll. Refer to Using the Pre-Built
.NET Connector (p. 62) for details.

The specific source code to use the provided interfaces will depend on your development language
and requirements. In general, a useful client application will:

a. Create a DotNetCoFluentUnit object.

dotNetCoFluentUnit=DotNetCoFluentUnit()
dotNetCoFluentUnit.ConnectToServerFromIorFile('aaS_FluentId.txt')

b. use the methods provided in DotNetCoFluentUnit and DotNetCoFluentSchemeCon-
troller to load a case file, send commands, or retrieve output from the remote Fluent session.

See Using the Pre-Built .NET Connector (p. 62) for details about these classes the provided
methods.

2. Start a Fluent as a Server session on a remote machine that is accessible from the client machine
(see Fluent as a Server Session Management (p. 19)).

3. Use the keyfile created by the remote Fluent as a Server session to connect your client application
to Fluent.

4.4. A Fluent Client Example

The following example demonstrates the procedure to create and use a simple client program. While
very basic, this example illustrates the essential elements of a client application and some of the funda-
mental capabilities offered by the SDK, including:

• compiling the IDL file into an includable module.

65
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

A Fluent Client Example

• creating a CORBA object and using the IOR string in a keyfile named aaS_FluentId.txt to
connect to a remote session.

• obtaining a scheme controller object from the Fluent as a Server session.

• loading a case file from the client machine into the Fluent as a Server session.

• send TUI commands to the remote session and retrieve the output.

• download files from the remote Fluent as a Server machine to the client machine.

• Exit when no more files are requested. The remote Fluent as a Server session is left running.

For reference, the example is performed on a 64–bit Windows 7 and makes use of the following 3rd
party software:

• Python 2.6 64–bit

• omniORBpy 3.5

4.4.1. Procedure

1. Compile CoFluentUnit.idl to create the AAS_CORBA module using the IDL compiler from
the 3rd party CORBA implementation.

Refer to the documentation for your CORBA compiler for details about how to compile the IDL file.

>omniidl -bpython -I%OMNIIDLLIB% "%AWP_ROOT212%\fluent\fluent21.2.0\addons\corba\win64\CoFluentUnit.idl"

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.66

Fluent as a Server Software Development Kit (SDK)

2. Create the client application, client_ex.py. This very simple example will perform the following
tasks:

• Prompt the user for the location of an aaS_FluentId.txt file with connection information a remote
Fluent as a Server session.

• Create a CORBA object that will be used to connect to the remote session.

• Obtain a scheme controller object from the Fluent as a Server session.

• Prompt the user for the name of a case file on the client machine to upload and read into
Fluent.

• Allow the user to interactively send TUI commands to the remote session until they indicate
they are finished

• Ask the user for the names of any files on the remote Fluent as a Server machine they would
like to download. These could include graphics or xy plots, case/data files, etc.

• Exit when no more files are requested. The remote Fluent as a Server session is left running.

Following are the major code blocks of the example program with the use of the SDK interface
methods highlighted. The complete code listing appears at the end of the example (Code List-
ing (p. 73)).

a. Import AAS_CORBA and any other required modules.

client_ex.py
A simple example of a &pn091g client application
import os
import io
import CORBA
import AAS_CORBA #import the AAS_CORBA module compiled from CoFluentUnit.idl

from functools import partial

b. Prompt the user for an aaS_FluentId.txt file that points to a Fluent as a Server session and
extract the IOR string.

Request that the user supply an aaS_FluentId.txt file with connection
details for a Fluent session
iorstring=''

while iorstring=='':
 filename=str(raw_input('Please provide an aaS_FluentId.txt file:\n> '))
 try:
 filehdl=open(filename,'r')
 except IOError:
 print(filename+" doesn't appear to exist!")
 continue

 if filehdl.read(3)!="IOR": #if the file doesn't begin with IOR
 print(filename+" doesn't appear to contain a valid IOR string!")
 continue
 else:
 filehdl.seek(0)
 iorstring=filehdl.read()
 filehdl.close()

67
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

A Fluent Client Example

c. Instantiate the ORB, connect to the Fluent as a Server session, and get a scheme interface
object using ICoFluentUnit.getSchemeControllerInstance().

Connect to the Fluent session and open the scheme interface
print "\nConnecting to Fluent sesssion:\n" + iorstring +"\n"
orb=CORBA.ORB_init()
fluent_session=orb.string_to_object(iorstring)
scheme_interface=fluent_session.getSchemeControllerInstance()

d. Load a local case file into the remote Fluent as a Server session.

• Ask the user for the name of a local case file and read it into a local buffer.

• Use ICoFluentUnit.uploadFileFromBuffer() to upload it to the remote working
directory.

• Use ICoFluentSchemeController.loadCase() to instruct the remote session to
read the case file.

Request the name of a local case file and upload it to the Fluent server
machine and read it into Fluent. For simplicity in this example we assume
here that it is a valid case file for the running session).
casefile=''
while not os.path.exists(casefile):
 casefile=str(raw_input('Please provide a case file to load:\n> '))

with io.FileIO(casefile) as f:
 fn_remote=os.path.basename(f.name)
 print 'Uploading file ' + fn_remote + '\n'
 f_buf_r=io.BufferedReader(f)
 scheme_interface.uploadFileFromBuffer(fn_remote,f_buf_r.read())
 fluent_session.loadCase(fn_remote)

e. Loop through TUI / aaS commands provided by the user and use ICoFluentSchemeCon-
troller.doMenuCommandToString() to execute them on the remote Fluent session
and return the output to the user.

Once the case file is loaded, the user may enter conventional TUI
commands to perform simulation, write files, etc
while True:
 try:
 command=raw_input("Please enter a TUI command (END-COSIM to finish):\n> ")
 except:
 break
 if command=='END-COSIM':
 break
 output=scheme_interface.doMenuCommandToString(command)
 print output

f. Prompt the user for the names of files created on the remote system and use ICoFluentS-
chemeController.downloadFileToBuffer() to download them to the client ma-
chine.

Ask the user for any remote files they would like to retrieve, download
them into a buffer and write them to local files
files=scheme_interface.doMenuCommandToString('ls')
for fn_retrieve in iter(partial(raw_input, 'Filename to retrieve (CR when done): '), ''):
 f_local=io.FileIO(fn_retrieve,'w')
 f_buf_w=io.BufferedWriter(f_local)
 f_buf_w.write(scheme_interface.downloadFileToBuffer(fn_retrieve))
 f_buf_w.flush()
 f_buf_w.close()

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.68

Fluent as a Server Software Development Kit (SDK)

3. Start a remote Fluent as a Server session and copy the resulting aaS_FluentId.txt file to a
convenient location on the client machine. For this example, a remote 2D Fluent session is started
on a Windows machine. For illustration purposes it is made interactive with the GUI displayed,
but in general this is not necessary. (see Starting Fluent In Server Mode (p. 19) for details on
starting Fluent as a Server sessions)

4. Run the client application, client_ex.py

C:\Example>python client_ex.py
Please provide an aaS_FluentId.txt file:
>

5. Provide the path to the aaS_FluentId.txt file

Please provide an aaS_FluentId.txt file:
> h:\FLServer\aaS_FluentId.txt

Connecting to Fluent sesssion:
IOR:010000002000000049444c3a4141535f434f5242412f49436f466c75656e74556e69743a312e
30000100000000000000680000000101027f0a00000031302e312e332e383300e8e21b0000001401
0f005253546cd1854f8c660d000000000001000000010000007f020000000000000008000000016e
2aa4004f4154010000001800000001762aa40100010001000000010001050901010000000000

Please provide a case file to load:
>

69
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

A Fluent Client Example

6. Provide the local path to a case file. In this case we are loading a 2D airfoil case

Please provide a case file to load:
> airfoil.cas.gz
Uploading file airfoil.cas.gz

Please enter a TUI command (END-COSIM to finish):
>

The case is uploaded to the remote machine and read into Fluent

7. Execute TUI commands to initialize the solution and iterate for up to 100 iterations. (some output
has been omitted for clarity)

Please enter a TUI command (END-COSIM to finish):
> solve initialize hyb-initialization

Initialize using the hybrid initialization method.

Checking case topology...
-this case has farfield bc
-so it will be initialized with constant pressure

 iter scalar-0

 1 1.000000e+00
 2 1.836666e-05

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.70

Fluent as a Server Software Development Kit (SDK)

 3 1.327842e-06
 4 2.862682e-07
 5 9.451323e-07
 6 1.223471e-07
 7 2.501983e-07
 8 1.137657e-07
 9 4.959297e-08
 10 2.159624e-08
hybrid initialization is done.
Please enter a TUI command (END-COSIM to finish):
> solve iterate 100
 iter continuity x-velocity y-velocity energy nut time/iter
 1 1.0000e+00 1.7946e-03 1.6266e-03 4.2495e-04 3.9276e-04 0:00:17 99
 2 6.3481e-01 2.0332e-03 1.3184e-03 1.1530e-04 2.9259e-04 0:00:25 98
 3 3.7028e-01 1.1406e-03 7.6986e-04 1.6216e-04 3.3093e-04 0:00:24 97
 .
 .
 .
 76 1.1063e-03 1.1319e-06 3.2180e-07 4.3823e-07 1.4217e-05 0:00:03 24
 77 1.0552e-03 1.0725e-06 2.9931e-07 4.1631e-07 1.4760e-05 0:00:03 23
 iter continuity x-velocity y-velocity energy nut time/iter
 78 1.0072e-03 1.0196e-06 2.8048e-07 3.9612e-07 1.5606e-05 0:00:03 22
! 79 solution is converged
 79 9.6023e-04 9.6787e-07 2.6549e-07 3.7618e-07 1.6702e-05 0:00:03 21

Please enter a TUI command (END-COSIM to finish):
>

8. Execute TUI commands to plot the pressure field, create an image file, and save the data file.
Then enter END-COSIM to complete the simulation activities.

71
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

A Fluent Client Example

Please enter a TUI command (END-COSIM to finish):
> display views camera field 3 3

Please enter a TUI command (END-COSIM to finish):
> display views camera target 0 0 0

Please enter a TUI command (END-COSIM to finish):
> display set contours filled-contours? yes

Please enter a TUI command (END-COSIM to finish):
> display contour pressure , ,

Please enter a TUI command (END-COSIM to finish):
> display set picture driver png

Please enter a TUI command (END-COSIM to finish):
> display save-picture contour_pressure.png

Please enter a TUI command (END-COSIM to finish):
> file write-data airfoil.dat.gz

Writing "| gzip -2cfv > \"airfoil.dat.gz\""...
 27.0%
Done.

Please enter a TUI command (END-COSIM to finish):
> END-COSIM
Filename to retrieve (CR when done):

9. Retrieve the generated files from the remote machine and enter a Carriage Return when finished
to exit.

Filename to retrieve (CR when done): airfoil.dat.gz
Filename to retrieve (CR when done): contour_pressure.png
Filename to retrieve (CR when done): <CR>

10. View the contour plot on the local machine

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.72

Fluent as a Server Software Development Kit (SDK)

4.4.2. Summary

This example showed only the basic building blocks of a customized Fluent as a Server client applic-
ation. By exploiting the full set of interface methods described in Fluent as a Server CORBA Inter-
faces (p. 54) you can build very powerful client applications tailored to the specific requirements of
your application.

4.4.3. Code Listing

Below is the complete code listing for client_ex.py

client_ex.py
A simple example of a Fluent As A Server client application
import os
import io
import CORBA

73
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

A Fluent Client Example

import AAS_CORBA #import the AAS_CORBA module compiled from CoFluentUnit.idl
from functools import partial

Request that the user supply an aaS_FluentId.txt file with connection
details for a Fluent session
iorstring=''

while iorstring=='':
 filename=str(raw_input('Please provide an aaS_FluentId.txt file:\n> '))
 try:
 filehdl=open(filename,'r')
 except IOError:
 print(filename+" doesn't appear to exist!")
 continue

 if filehdl.read(3)!="IOR": #if the file doesn't begin with IOR
 print(filename+" doesn't appear to contain a valid IOR string!")
 continue
 else:
 filehdl.seek(0)
 iorstring=filehdl.read()
 filehdl.close()

Connect to the Fluent session and open the scheme interface
print "\nConnecting to Fluent sesssion:\n" + iorstring +"\n"
orb=CORBA.ORB_init()
fluent_session=orb.string_to_object(iorstring)
scheme_interface=fluent_session.getSchemeControllerInstance()

Request the name of a local case file and upload it to the Fluent server
machine and read it into Fluent. For simplicity in this example we assume
here that it is a valid case file for the running session).
casefile=''
while not os.path.exists(casefile):
 casefile=str(raw_input('Please provide a case file to load:\n> '))

with io.FileIO(casefile) as f:
 fn_remote=os.path.basename(f.name)
 print 'Uploading file ' + fn_remote + '\n'
 f_buf_r=io.BufferedReader(f)
 scheme_interface.uploadFileFromBuffer(fn_remote,f_buf_r.read())
 fluent_session.loadCase(fn_remote)

Once the case file is loaded, the user may enter conventional TUI
commands to perform simulation, write files, etc
while True:
 try:
 command=raw_input("Please enter a TUI command (END-COSIM to finish):\n> ")
 except:
 break
 if command=='END-COSIM':
 break
 output=scheme_interface.doMenuCommandToString(command)
 print output

Ask the user for any remote files they would like to retrieve, download
them into a buffer and write them to local files
files=scheme_interface.doMenuCommandToString('ls')
for fn_retrieve in iter(partial(raw_input, 'Filename to retrieve (CR when done): '), ''):
 f_local=io.FileIO(fn_retrieve,'w')
 f_buf_w=io.BufferedWriter(f_local)
 f_buf_w.write(scheme_interface.downloadFileToBuffer(fn_retrieve))
 f_buf_w.flush()
 f_buf_w.close()

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.74

Fluent as a Server Software Development Kit (SDK)

4.5. OLGA-Fluent Coupling

You can use the Fluent as a Server functionality to couple Ansys Fluent with SPT-OLGA using the Ansys
Workbench or the Ansys Twin Builder environment. The coupling is implemented through IronPython
scripting that makes use of connectors/libraries that are supplied with Fluent. Both Workbench and
Twin Builder incorporate IronPython scripting environments. So, while the examples in this manual will
show the usage in Workbench, the same approach and techniques apply to coupling through Twin
Builder.

The coupling is implemented as a Leader/Follower model. In this model, a single process (the Leader)
has unilateral control over one or more other processes (the Followers). The Follower processes do not
communicate with each other and any synchronization between the Follower processes is the respons-
ibility of the Leader process. For example, in a transient simulation the Leader process must manage
the simulation time for all of the Follower processes.

Figure 4.1: Leader/FollowerModel

In the OLGA-Fluent coupling implementation, the Leader role can be filled by the IronPython interpreter
that is available in either Workbench or Twin Builder. Fluent and OLGA are the Followers (along with
any other supported Workbench components or Twin Builder couplings). Several DLLs and helper ap-
plications are made available in the Software Development Kit to enable communication between the
Leader and Follower processes.

Figure 4.2: OLGA-Fluent Coupling Implementation (p. 76) shows how the Leader/Follower model is
employed for OLGA-Fluent coupling.

75
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

OLGA-Fluent Coupling

Figure 4.2: OLGA-Fluent Coupling Implementation

The important points to note are:

• The Leasder role is occupied by the IronPython interpreter that is present in both Workbench
and Twin Builder.

• The OLGA OPC Connector DLL and Fluent as a Server DLL contain modules that are used to
communicate with the OLGA and Fluent Follower processes. (Leader-Side Libraries (p. 77))

• An OLGA OPC Connector application runs on the OLGA host machine and listens for connections
from the Leader process. (OLGA OPC Connector (p. 80))

• The Fluent as a Server Connector is embedded in the Fluent application and is enabled by
starting Fluent in Server mode as described in Starting Fluent In Server Mode (p. 19).

4.5.1. Requirements

In addition to installations of Fluent and OLGA, you must have the following installed in order to use
the OLGA-Fluent coupling capability: Ansys Workbench or Ansys Twin Builder.

4.5.2. Procedure

The basic steps to perform a coupled OLGA-Fluent simulation are as follows:

1. Start the OLGA application and start the OLGA OPC Server.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.76

Fluent as a Server Software Development Kit (SDK)

2. Start the OLGA OPC Connector on the OLGA machine with appropriate options (OLGA OPC
Connector (p. 80)).

3. Start Fluent in server mode (Fluent as a Server Session Management (p. 19)).

4. Start Workbench or Twin Builder.

5. Run your IronPython co-simulation script in Workbench or Twin Builder. In order to perform co-
simulation using the provided interfaces, your IronPython script must, at least:

Load the OLGA OPC Connector DLL (OLGA OPC Connector DLL (p. 77)).

Load the Fluent as a Server DLL (Fluent as a Server DLL (p. 77)).

4.5.3. Leader-Side Libraries

The following libraries are included with the Fluent as a Server SDK and are used to communicate
between the IronPython Leader running in Workbench or Twin Builder and the Fluent and OLGA clients.

4.5.3.1. Fluent as a Server DLL

In order to communicate with a running Fluent as a Server session from the IronPython Leader, it
is necessary to load one of the pre-built .NET DLLs supplied with the Fluent as a Server SDK. Refer
to Using the Pre-Built .NET Connector (p. 62) for additional information about the Fluent as a
Server interfaces and the available DLLs.

4.5.3.2. OLGA OPC Connector DLL

IronPython clients running in either Ansys Workbench or Ansys Twin Builder connect to the OLGA
OPC Connector through classes and methods defined in the file DotNetCoOpcUnit.dll and
structures defined in AasCoOpcUnit.dll.

4.5.3.2.1. Libraries

DotNetCoOpcUnit.dll

public class DotNetCoOpcServer

public DotNetCoOpcServer();

constructor for DotNetCoOpcServer objects

public void ConnectToServerFromIorFile(string p_stringIorFile);

connect to the remote OLGA OPC server with OLGA aaS key p_stringIorFile

public string getStatusReport();

returns a status report from OLGA

public DotNetOPCItemMgmt AddGroup(string p_stringGroupName);

create an OPC group named p_stringGroupName

77
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

OLGA-Fluent Coupling

public void RemoveGroup(DotNetOPCItemMgt p_dot_netOPCItemMgt);

remove the OPC group named p_dot_netOPCItemMgt

public DotNetOlgaBrowseServerCommands getOLGABrowseServerCommands();

retrieve a browser of OLGA commands

public DotNetOLGACommandProperties getOLGACommandProperties();

retrieve a browser of OLGA command properties

public DotNetOPCItemProperties getOPCItemProperties();

retrieve a browser of OPC item properties

public DotNetOPCBrowseServerAddressSpace getOPCBrowseServerAddressSpace();

retrieve a browser of OPC Server address space

public class DotNetOPCBrowseServerAddressSpace

public string[] BrowseOPCItemIDs();

retrieve OPC item IDs from OLGA

public class DotNetOlgaBrowseServerCommands

public string[] BrowseCommandIDs();

retrieve a list of OLGA command IDs

public class DotNetOLGACommandProperties

string GetCommandPropertiesReport(string p_stringCommandID);

retrieve a command properties report for the OLGA command p_stringCommandID

public class DotNetOPCItemProperties

public string GetItemPropertiesReport(string p_stringItemID);

retrieve an item properties report for the OPC item p_stringItemID

public class DotNetOPCItemMgt

public AAS_CORBA.OPC.IOItem AddItem(string p_stringItemName);

add the OPC item p_stringItemName to an OPC group

public DotNetIOPCSyncIO GetIOPCSyncIO();

retrieve a synchronous access object

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.78

Fluent as a Server Software Development Kit (SDK)

public class DotNetIOPCSyncIO

bool ReadItemAsBool(int p_iOPCHandle);

void WriteItemAsBool(int p_iOPCHandle, int p_iComType, bool p_Value);

bool[] ReadItemAsBoolArray(int p_iOPCHandle);

void WriteItemAsBoolArray(int p_iOPCHandle, int p_iComType, bool[]
p_aValues);

double ReadItemAsDouble(int p_iOPCHandle);

void WriteItemAsDouble(int p_iOPCHandle, int p_iComType, double p_Value);

double[] ReadItemAsBoolArray(int p_iOPCHandle);

void WriteItemAsDoubleArray(int p_iOPCHandle, int p_iComType, double[]
p_aValues);

int ReadItemAsLong(int p_iOPCHandle);

void WriteItemAsLong(int p_iOPCHandle, int p_iComType, int p_Value);

int[] ReadItemAsLongArray(int p_iOPCHandle);

void WriteItemAsLongArray(int p_iOPCHandle, int p_iComType, int[]
p_aValues);

string ReadItemAsString(int p_iOPCHandle);

void WriteItemAsString(int p_iOPCHandle, int p_iComType, string p_Value);

string[] ReadItemAsStringArray(int p_iOPCHandle);

void WriteItemAsStringArray(int p_iOPCHandle, int p_iComType, string[]
p_aValues);

string ReadStringifiedItem(int p_iOPCHandle);

void WriteStringifiedItem(int p_iOPCHandle, int p_iComType, string
p_Value);

AasCoOpcUnit.dll

struct ICoOpcUnitError

Structure for exceptions returned from the OPC connection to OLGA

long m_iCode;

long m_stringDescription;

long m_stringInterfaceName;

long m_stringMoreInfo;

long m_stringName;

long m_stringOperation;

long m_stringScope;

79
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

OLGA-Fluent Coupling

struct IOItem

Structure for items in OLGA. To add items, see public AAS_CORBA.OPC.IOItem AddItem(string
p_stringItemName); (p. 78). To read/write items, see public class DotNetIOPC-
SyncIO (p. 79).

long m_iCOMType

long m_iOPCHandle

string m_stringItemId

4.5.4. Follower-Side Connectors

4.5.4.1. Fluent as a Server

The Fluent as a Server connector is embedded in the Fluent installation. To enable it, start Fluent
in server mode. For more information refer to Starting Fluent In Server Mode (p. 19).

4.5.4.2. OLGA OPC Connector

The OLGA OPC Connector provides a listening interface for connections to OLGA from an IronPython
client running in either Ansys Workbench or Ansys Twin Builder. The connector interface implements
a subset of OPC interfaces. Two versions are provided for use depending on whether the machine
running OLGA is 32-bit or 64-bit architecture:

32–bit

v212\fluent\fluent21.2.0\addons\corba\ntx86\AasCoOpUnit.exe

64–bit

v212\fluent\fluent21.2.0\addons\corba\win64\AasCoOpUnit.exe

Usage

The connector accesses OLGA through a COM OPC interface. The COM OPC OLGA server has to be
started before starting the connector. Once the OLGA OPC server is running, you can invoke the
connector with the following command:

AasCoOpcUnit.exe -host<host> -port<port> -portspan<portspan> -iorFile<filename> -opcCLSID<CLSID>

<host>

The hostname or IP address on which the AasCoOpcUnit application will listen. This is the
name that will be made available in the IOR file that is created and used to connect. If
omitted, the connector will listen on all available IP addresses. If set to localhost, only
local clients will be able to connect.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.80

Fluent as a Server Software Development Kit (SDK)

<port>

The port number on which to listen for connections. If no port is specified, a randomly
chosen port will be used. If <portspan> is also specified, <port> is the base of the port
range.

<portspan>

Specifies that a range of <portspan> ports should be used. This requires that <port>
also be specified. The actual range used will be [<port>:<port>+<portspan>-1]

<filename>

specifies the name to use for the IOR text file containing the OLGA OPC connection key.
By default, the name will be aaS_OPCId.txt.

<CLSID>

specifies the CLSID of the OPC server. The default value is “SPT.OlgaOPCServer.7’. Check
the OLGA documentation for the correct value.

After starting the OLGA OPC Connector, the following session information will be displayed:

Name of the key file

OPC CLSID

Result of checking Vendor info and version

Listening endpoints (for example, <protocol>://<IP>:<port>)

4.5.5. OLGA-Fluent Coupling Examples

4.5.5.1. OLGA OPC Example Code

These examples are intended to demonstrate usage of the OLGA OPC Connector libraries to com-
municate and control an OLGA session with a running OLGA OPC Server. In order to work, the OLGA
OPC Connector application must also be running on the OLGA machine (OLGA OPC Connect-
or (p. 80)).

Establishing an OLGA Connection and Exception Handling

This example represents the simplest case of connecting to an OLGA session through the OLGA
OPC Connector and requesting a status report from OLGA. It also illustrates a recommended approach
for using try/except blocks for catching exceptions:

##
OLGA OPC Server Version Report #
##

import clr
import sys

Load the DLLs that define the OLGA OPC connection classes and structures

81
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

OLGA-Fluent Coupling

sys.path.append('C:/Program Files/ANSYS Inc/v212/fluent/fluent21.2.0/addons/corba/DotNetFramework40')
clr.AddReferenceToFile('DotNetCoOpcUnit.dll')
clr.AddReferenceToFile('AasCoOpcUnit.dll')

Import classes and structures
import AAS_CORBA
from AAS_CORBA.OPC import DotNetCoOpcServer
from AAS_CORBA.OPC import ICoOpcUnitError

try:
 # Instantiate a DotNetCoOpcServer object and use the ConnectToServerFromIorFile
 # method to connect using a provided keyfile
 iOPCServer=DotNetCoOpcServer()
 iOPCServer.ConnectToServerFromIorFile('C:/Work/OLGA-Coupling-Demo/aaS_OpcId.txt')

 # Request a status report and print the output
 print iOPCServer.getStatusReport()
except ICoOpcUnitError as error:
 # An exception was thrown by the OLGA OPC connector
 print "ICoOpcUnitError Exception caught:"
 print "\tCode = ", error.m_iCode
 print "\tDescription = ",error.m_stringDescription
 print "\tInterface = ",error.m_stringInterfaceName
 print "\tMore Info = ",error.m_stringMoreInfo
 print "\tOperation = ",error.m_stringOperation
 print "\tScope = ",error.m_stringScope
except Exception as ex:
 print "Exception caught..."
 print ex.message
except:
 print "Unknown Exception..."

Creating and Manipulating Groups and Items in OLGA

This example creates an OPC item to act as a simple external clock for the OLGA simulation and
increments the clock time. It demonstrates creation and manipulation of groups and items in OLGA.
Such an external clock is a crucial component of coupled transient simulations.

##
OLGA OPC Sample Clock Operations #
##

import clr
import sys

from System.IO import File
sys.path.append('C:/Program Files/ANSYS Inc/v212/fluent/fluent21.2.0/addons/corba/DotNetFramework40')
clr.AddReferenceToFile('DotNetCoOpcUnit.dll')
clr.AddReferenceToFile('AasCoOpcUnit.dll')

import AAS_CORBA
from AAS_CORBA.OPC import DotNetCoOpcServer

try:
 iOPCServer=DotNetCoOpcServer()
 iOPCServer.ConnectToServerFromIorFile('C:/Work/OLGA-Coupling-Demo/aaS_OpcId.txt')

 # Add a Group and use the GetIOPCSyncIO method to instantiate a syncrhonous I/O object
 iOPCItemMgt=iOPCServer.AddGroup("WB")
 iOPCSyncIO=iOPCItemMgt.GetIOPCSyncIO()

 # Add the OPC items ExternalClock and INITTIME to the newly created WB group
 ioSimServerDemoExternalClock = iOPCItemMgt.AddItem('Sim.ServerDemo.ExternalClock')
 ioSimServerDemoINITTIME = iOPCItemMgt.AddItem('Sim.ServerDemo.INITTIME')

 # Use the synchronous I/O object to get a numerical and a string representation of the INITTIME value.
 stringInitTime=iOPCSyncIO.ReadStringifiedItem(ioSimServerDemoINITTIME.m_iOPCHandle)

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.82

Fluent as a Server Software Development Kit (SDK)

 doubleInitTime=iOPCSyncIO.ReadItemAsDouble(ioSimServerDemoINITTIME.m_iOPCHandle)
 print 'Sim.ServerDemo.INITTIME:'
 print '\tStringified value:',stringInitTime
 print '\tNumerical value:',doubleInitTime, 'days'

 # Use the synchronous I/O object to get a numerical and a string representation of the ExternalClock value.
 stringExternalClock=iOPCSyncIO.ReadStringifiedItem(ioSimServerDemoExternalClock.m_iOPCHandle)
 doubleExternalClock=iOPCSyncIO.ReadItemAsDouble(ioSimServerDemoExternalClock.m_iOPCHandle)
 print 'Sim.ServerDemo.ExternalClock:'
 print '\tStringified value:',stringExternalClock
 print '\tNumerical value:',doubleExternalClock, ' days'

 #advance clock 1 day
 doubleExternalClock=doubleExternalClock+oneDay
 iOPCSyncIO.WriteItemAsDouble(ioSimServerDemoExternalClock.m_iOPCHandle,
 ioSimServerDemoExternalClock.m_iCOMType,doubleExternalClock)
 stringExternalClock=iOPCSyncIO.ReadStringifiedItem(ioSimServerDemoExternalClock.m_iOPCHandle)
 doubleExternalClock=iOPCSyncIO.ReadItemAsDouble(ioSimServerDemoExternalClock.m_iOPCHandle)
 print 'Sim.ServerDemo.ExternalClock advanced 1 day:'
 print '\tStringified value:',stringExternalClock
 print '\tNumerical value:',doubleExternalClock, ' days'

 # Remove the group
 iOPCServer.RemoveGroup(iOPCItemMgt)
except ICoOpcUnitError as error:
 print "ICoOpcUnitError Exception caught:"
 print "\tCode = ", error.m_iCode
 print "\tDescription = ",error.m_stringDescription
 print "\tInterface = ",error.m_stringInterfaceName
 print "\tMore Info = ",error.m_stringMoreInfo
 print "\tOperation = ",error.m_stringOperation
 print "\tScope = ",error.m_stringScope
except Exception as ex:
 print "Exception caught..."
 print ex.message
except:
 print "Unknown Exception..."

83
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

OLGA-Fluent Coupling

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.84

Index
A
aaS. commands, 58
AAS_CORBA, 54
aaS_FluentId.txt, 23
AAS_HOST, 19
AAS_PORTS, 19

C
client application

creating, 64
CoFluentUnit.idl, 54
commands

aaS., 58
CORBA interface, 58
Fluent Remote Console, 30

fluent., 30
fsm., 30
tui., 36

limitations, 17
connecting

to server, 24
conventions used in this guide, ix
CORBA interface, 54

aaS. commands, 58
limitations, 17

E
environment variables, 19
examples

client application, 65
Fluent Remote Console, 38

F
Fluent as a Server

introduction, 15
Fluent Output Window, 29
Fluent Remote Console, 25

commands, 30
limitations, 17
using, 25

FLUENT_AAS, 19
FLUENT_AAS_KEY_FILE, 19

I
installing, 17
interface

CORBA, 54

aaS. commands, 58
ICoFluentSchemeController, 56
ICoFluentUnit, 54

introduction
Fluent as a Server, 15

K
keyfile

specifying, 23

L
limitations, 17

O
overview, 15

R
requirements, 17

software development kit, 53

S
SDK (software development kit see)
server mode, 19

connecting, 24
keyfile, 23
options, 19
starting, 19

session management, 19
software development kit, 53

requirements, 53
starting

Fluent Remote Console, 25
server mode, 19

U
using this manual, ix

85
Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Release 2021 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.86

	1st page
	Ansys_Fluent_as_a_Server_Users_Guide
	Ansys Fluent as a Server User's Guide
	Table of Contents
	Using This Manual
	1. The Contents of This Manual
	2. Typographical Conventions
	3. Mathematical Conventions

	Chapter 1: Introduction
	1.1. Overview
	1.2. Limitations
	1.3. Installation Requirements
	1.3.1. Server Machine
	1.3.2. Client Machine

	Chapter 2: Fluent as a Server Session Management
	2.1. Fluent as a Server Sessions
	2.1.1. Starting Fluent In Server Mode
	2.1.1.1. Startup Options
	2.1.1.2. Steps To Start Server Mode From Fluent Launcher
	2.1.1.3. Steps to Start Fluent in Server Mode From the Command Line

	2.1.2. Fluent as a Server Keyfile

	2.2. Connecting to Fluent In Server Mode

	Chapter 3: Fluent Remote Console
	3.1. Using the Fluent Remote Console
	3.1.1. The Fluent Remote Console Window
	3.1.2. The Fluent Output Window

	3.2. Fluent Remote Console Commands
	3.2.1. File Session Manager Commands (fsm.)
	3.2.2. Fluent as a Server Commands (fluent.)
	3.2.3. Fluent TUI Commands (tui.)
	3.2.4. Remote File and Shell Commands

	3.3. Fluent Remote Console Example

	Chapter 4: Fluent as a Server Software Development Kit (SDK)
	4.1. Requirements
	4.2. Fluent as a Server CORBA Interfaces
	4.2.1. ICoFluentUnit
	4.2.2. ICoFluentSchemeController
	4.2.3. Exceptions
	4.2.4. aaS Commands (aaS.)
	4.2.4.1. Instant Commands
	4.2.4.2. Collaborative Commands

	4.2.5. Using the CORBA Interfaces
	4.2.6. Using Interactive Prompting

	4.3. Procedure for a Creating a Simple Fluent as a Server Client Application
	4.4. A Fluent Client Example
	4.4.1. Procedure
	4.4.2. Summary
	4.4.3. Code Listing

	4.5. OLGA-Fluent Coupling
	4.5.1. Requirements
	4.5.2. Procedure
	4.5.3. Leader-Side Libraries
	4.5.3.1. Fluent as a Server DLL
	4.5.3.2. OLGA OPC Connector DLL
	4.5.3.2.1. Libraries

	4.5.4. Follower-Side Connectors
	4.5.4.1. Fluent as a Server
	4.5.4.2. OLGA OPC Connector

	4.5.5. OLGA-Fluent Coupling Examples
	4.5.5.1. OLGA OPC Example Code

	Index

