NANANNANANNANASS
[VAVAVAVANAVAVAVAVAVAVAVAY:
OORRKX VAVAVAYA%
Ty ek

g

VAVAVAY, VAVAVAVAVAY
AVAVAVAY.S A\VAVAVAVAVA jYay
VAS 3

XXX KOOI XK KKK XK K OEE

CFD EXPERTS

Simulate the Future

WWW.CFDEXPERTS.NET

https://cfdexperts.net/
https://cfdexperts.net/

\nsys

Z021R2

Engineering What's Aheod.

22021 ANSYS, Inc.
All Rights Reserved

Unauthoriz
aor duplication is prohibkited

Ansys TurboGrid Reference Guide

\nsys
ANSYS, Inc. Release 2021 R2
Southpointe July 2021
2600 Ansys Drive
Canonsburg, PA 15317 ANSYS, Inc.and
ansysinfo@ansys.com 'Ii\t':ys E‘pref

X .are

http://www.ansys.com registered 1SO
(T) 724-746-3304 9001:2015
(F) 724-514-9494 companies.

Copyright and Trademark Information
© 2021 ANSYS, Inc. Unauthorized use, distribution or duplication is prohibited.

Ansys, Ansys Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, product, service and feature
names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries located in the
United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark
of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property
of their respective owners. FLEXIm and FLEXnet are trademarks of Flexera Software LLC.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-
ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC,, ITS SUBSIDIARIES, OR LICENSORS. The software products

and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement
that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting
laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products

and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions
of that software license agreement.

ANSYS, Inc. and Ansys Europe, Ltd. are UL registered 1SO 9001: 2015 companies.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use,
duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc.
software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for Ansys proprietary software
and third-party software. If you are unable to access the Legal Notice, contact ANSYS, Inc.

Published in the U.S.A.

Table of Contents

T.ANSYS TUrBOGHIA LAUNCREY ...ttt e e e ettt e e e e e s e st e e e e e e e e e s e saaees 9
1.1.The Ansys TurboGrid Launcher INterfaceoceeiiiiiiiiiiiiiiiieee ettt e e e 9
TL1 T IMIEIIU B bbbt abebeaaeee 9
TTTTLFIE IMIBNU ettt ettt e ettt e e e e e e s bbbttt e e e e e se s abbbteaeeeesesaansseeeas 10

TL1 T TT0SAVE AS ettt e e e e e 10

L I O 0 O ¥ | TP P PP PRSP PPPPPPRt 10

T T2 EAIE IMIENU Lttt e ettt e e e e e sttt et e e e e e s e bbbt e e e eeesesaaaabbeaeaaeeas 10

LIS 0 R 1= O OO U T TP PUPPPTRRRPPPN 10

LI IS 920 i o TSP U PP URRUPPPTPPPP 10

L I B T @ o {[o] o T PP PPPTPPPRRR N 10

1.1.1.2.3.1. Graphical User Interface STYleoooouiiiiiiiiiiiitee et 10

1.1.1.2.3.2. Font and Formatted FONTcciiiiiiiiiiiiiiiieeee ettt e e 10

11030 CFX IVIBNU e s 10
1.1.1.3.1.TUrbOGHIA 2027 R2 ittt ettt ettt e e e e s e sabataeeeeeeeeas 10

1.1.1.3.2. Other Ansys CFX APPlICAtioNSccooviiuuiiiiiiiiiiieiitteee ettt e e e 11

T.TT 4. SROW IMIEINU .ttt ettt e e e e ettt e e e e e s e bbbb e e e e e e e e e s anbbbaeeeeeessanaaes 11

LIS B IR 5 7 1| = 4o IO OO O ST OO PPPPRRPPI 11
T L | 11

T.1.T430 SYSERIM ittt ettt ettt ettt ettt et ete e eee e et ettt et et et e eete b ettt et ettt et e e eeeeeeaeaee 11

1104 4.VArTADIES ..ottt e e e e e ettt eeeeeas 11

1115, TOOIS IMBINU etieieeie ettt ettt e e e e s ettt et e e e e e s s aabbteeeeeeesesaaabbbaeaeeaeeens 11
1.1.1.5.1. Ansys Client Licensing ULilitycceeeiimmiiiiiiiiiieiieeeeeeteeee et 11
1.1.1.5.2.COMMANG LINE ..oiiiiiiiiiiiiiiitee ettt ettt e e e e e sttt e e e e e e s s aabbaaeeeeeeeenns 11

T TEE T8 e V1 a1 = 12

11100, USEE IMIEBNU ..ttt s et ettt s e e e e e tabeb s s e e eereaarbnaa s es 12

L I I8 o 1= T o T YL 1= U 12

LI I oo | o T- 1 SO USRS O PP PP UPPPPTPPPPO 12
1.1.3.WOrking Dir€CtOry SEIECTON ..ccceiiiiiiiiiiiieeee ettt ettt e e ettt e e e e e e ettt eeeeeeseeaaes 13

LI @ LU 4 oYU L kT4 o Ve o YA 13
1.2.Customizing the Ansys TUrbBOGId LAUNCRENuiiiiiiiiiiiiiiee ettt e 13
T.2.T0CCL STIUCTUIE ettt ettt ettt et et e e et e e et et et et e e e e e e et eeeeeeeeeeaeaes 13

T2 11 GROUP ettt s e et ettt res e e e e e e et aatba e e e eeeataastasaaseseeeeasssssssnnssesaeenensrens 14

T.2.T.2. APPLICATION ittt ettt ettt e e e e e ettt e e e e e e s s aabbeeeeeeeesesaabbeaeaeeaeeens 14
1.2.1.2.1. Including Environment Variablescccccciiiii, 16
T.2.T.3.DIVIDER ...ttt ettt ettt e e e e e ettt et e e e e e s bb e et e e e e e s e s bbaeaaeeeeens 16

1.2.2. Example: Adding the Windows CalCulatorccooiviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 17
2.CFXCommMand LaNQUAGEcoooiiiiiiiiii 19
2.1 INEFOAUCTION 1.ttt et e e ettt e et e e e ettt et e e e e e se bbbt teeeeeesesaaaabbbaeeeeeessnansbeneeeas 19
2.2 Q0L SYNTAX ceteetieeeieieieiee ettt ettt ettt et e e e e et e e e e et e e e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e e e e e aaaaaaaaeaaaaaaaaaaaans 19
2.2.1.BaSiC TEIMINOIOQY .ceeiiiiiiiiiiiiteeeee ettt e e e e e ettt e e e e e ettt et e e e e e e essaabbbteeeeeeeseaanbbbaeeaaeesanns 20
2.2.1.1.The Data HIerarchyeeiiiiiiiiiee ettt ettt e e e e ee s 20
2.2.2.5IMPle SYNTaX DETAIIS c.eeeieeiiiiiieeee ettt ettt e e e e e ettt e e e e e e e ataaeeeeeens 20
2.2.2.1.€AS8 SENSITIVITY ceeeiiiiiiiiieiie et 20
2.2.2.2.CCL NamMES DefiNItiON ..cceeeieiiiiiiietee ettt ettt e e e e e e itae e e e e e e e e s 21

2.2.2.3. INAENTATION ..vtiiieieteeeiiitettee ettt e e e e ettt e e e e e e e s bbbttt e e e e e e eeabbbbteeeeeeeesaaabbaaaeeas 21
2.2.2.4.End of Line CommeNnt CharaCteruceieiiiiiiiiiiiieee ettt et e e e 21

2.2.2.5. ContinUAtioN CRAraCLercceiiiiiiiiiiiiiieee ettt ettt e e e e e et e e e e e e e e sibbeeeeeas 21
2.2.2.6.NaMEA ObjJECLS .oiiiiiiiiiiiiiic e, 22

PRI Y191 |11 10T A WO o) =T el & T 22

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. iii

TurboGrid Reference Guide

2.2.2.8. PAraMELEIS ...uueeeeeeiiiiiiiieeeeeeetittiiiieseeeeetttersaaeseeeeerreessansssssseesesessnnsssssseesesesssnnssssseeresesnns 22

2.2.2.9. LISTS 1ettiititiritiiitttettteteteettteetetteteeteeetteettt ettt ettt te bttt tat ettt aretetarerarares 22
2.2.2.710.Parameter VAlUBSuuuuuuuuiiiic s sssnns 22

2.2.2. 70,1, SEHNG teiiiiiiiiiiiiiieieieeeteeeeeeeeereeteetteteeeeteeetteeeteetesaeteteeeettsteteteteteettereretetereerrerrrerrrenn 22

2.2.2.10.2. SHNG LISt oeiniieeieeieiiiiiiiie ettt e e et trttiee s e e e eereerbaassseeeeranasnnnnsssseeesennssnnnnnnns 23

2.2.2. 703 INTEGET coiiiiiiiiiiieieee e e e e e e e e e e e e 23
2.2.2.10.4.INTEGET LIST cerviiuiiieeeeeeriiiiiiiieeeeeeeettitiiieeeeeeeeteertaaasssseeereerernnnsssseeeesesermnnsnseseessenes 23

B T (= | PP PPPPPPPPPPPPPPPRt 23

2.2.2.70.6. REAILIST ..t s ssnssnnnn 24
2.2.2.70.7.L0GICAI 1iiiiiiiiiiiiiie 24
2.2.2.70.8.LOGICAI LISt ceiiiiiiiiiiiiiiiiiiiii e 24

I B B LYot Yo T @ T T - T] SRR 24
2.3.0bject Creation and DeletioNccoiiiiiiiiiiii 24
2.4.Ansys CFX EXPression LANGQUAGEcceviiviiiiiiiieeeeeeetiiiiiiieeeeeeeeettitiieseseeeeeetnsnnassssseeeeseemssnsnsssssseseeensns 25
2.4.1. CEL Functions, Constants and System Variablesccccccviiiiiiiiiii, 26
P I D =TI o T -1 0 B V] o et o1 LS 26

2.4.71.2. CEL CONSTANTS ..uuureeeieiiiiiiiiieeeeeeeritiiuiiieeeeeeereertnnnasseseereeessmsnssseseresnssmsnsnssssesssssssmnnssessenn 26
3.C0MMANA ACHIONSoooiiiiiiiiciieee ettt e e e e e ettt e e e e e e e s e s neaaaaeeeeeseasssnnsraneeaeessasssnsssreaaeeesessansnsnnns 27
78 I [0 e T [¥ Tt AT o KPS PP PPPPPPPPPPPPPRt 27
3.1.1.Command ACtiONS EXAMPIE c.uuuuueiiieeeeeiiciee e e e ettt e e e e e e e eetat e e e e eeseresrnaaeeeeeaaaees 27
3.2.File Operations from the Command Editor Dialog BOXcccoeveeiiiiiiieiiiiieiiiiieeee e 28
3.2.1.5aVE STATE FIlES i 28
3.2.1.1.savestate Command EXAmMPIESccoveiiiiiiiie i e e e 29

VIV 2 1=T: To B) 1 (I o1 [S 30
3.2.2.1.readstate Command EXAMPIESccovviiiiiiiie et e e e e et e e e e e er e 31
3.2.3.5aVE TOPOIOGY FlES ... sssnan 32
3.2.3.1.savetopology Command EXample ..., 33
3.2.4.5aVE MESH FlES .. se s s s s s s s s s s s s s s s s nsssnnnnsnnnnen 33
3.2.4.1.savemesh Command EXAmMPIESooovviiiiiiiiii e e e e e e eeeanee 33
3.2.5.5aVE Blade FIlES .o 33
3.2.5.1.saveblade Command EXamMPIEccceeieieiiiiiieie e e e e ea e 34

I N O =T | (Y =T [o] o I a1 1= 34
3.2.6.1.5e55i0N COMMAN EXAMPIES .ovveuneieiieeeeiiiieie e e e e et e e e e e e e ettt eee e e e e e e esesbrnaeeeeeeseeeaenns 35

3.2.7. REAA SESSION FIlESevuiiiiiiiiiiiitiiiii bbbttt aba b bsbababebebabebennnes 36
3.2.7.1.readsession Command EXampPIescouueuiiiiiiiiiiiicice e e 36

IR N @ =T | (I o - Yo [alo] o)V SO S PO PRPRPRRRS 37
3.2.9. EXPOIt GEOMELIY ...uniiiiiiiiiiiiiieeeeeeetttiiiiieeeeeeettterraaaeseseeesreessansessssseessnssnsnsssssseessnnessnnnsssssessneens 37
3.2.9.1.tetin Command EXamPIEcooviiiiiie et e e e e e e e e e e e e e e e e e eeaaaaas 37
3.3.Quantitative Calculations in the Command Editor Dialog BOXcccevvvviiiiiiiiiiiiiiiinn, 37
3.3.T. FUNCEION CAICUIATION L.uuiiiiiiiiiiiiiiiiiiiitiiiiieititiaieieaeaeaaeaeebebeae s e beaebeesesassesssesssssssssssssessssssesssssnnnes 38
3.3.1.1. EXpression SPeCIfiCationuvuuuuuuuuruuuiuiiiiriiieieiereierersrerererrrsrsrssrrerearrerer..—.—.——————. 39

T TN B (LY o T=Tl | i et 14 (o) o TP PPNt 39
3.3.1.3.Quantitative FUNCTION LiSt ..evviiuiiiieiriiiiiiiiiiiee ettt eeeceeri s e e e e eeeerebie s s e eeeeeeennnns 39

T T . 0 - 1 PP PPPPR TR 39
3.3.1.3.2.@rEAAVE ..ttt ettt e e e e e e ettt e e e e e ettt e e e e e e et e ebbaa e e eeeeeeerannnans 40

T N I B T 1 =T 114 | O O OO PP PPUPPPPRRRPPPPPPPPPPRt 40

T TR I 3 - VPP P PP PPPPPPPPPPPPRE 40

R T J0 T o 1 0) SO PRUPPPPRRPRPR 40

7R T8 IS JT G T (=14 o 4 TP PP PPPPPPPPPPPPPPPRE 40

33137 1ENGTNAVE ... e e e e e e e e e e e ee s 40

3.3.T.3.8. 1@NGTNINT coeiiiiiiiiiiiiiieititee ettt eaa e eese e eatesesessesaeteaetatstsantetnrnrnranes 41

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

TurboGrid Reference Guide

3.3.1.3.9. MAXVAL ittt ettt ettt et et et et et et et et e reaarare 41

e T 0 TR 0 o110 | UUPRR 41

705 70 0 TR A o o o TSR 41

705 70 0 TR 2 U o S SPPRR 41

3313130 VOIUIME Lottt ettt bttt st b st sbnnnbnnes 41

3.3.1.3. T4, VOIUMEAVE ...coiiiiiiiiiiiiiiieeeeeeeeeeee e e et et e e et s eee e e e e e e e e e e e e e e e s e e s e e e e s e s e s e s e s e s e sesesasesesesesesnrnnes 41

331315, VOIUMEINT L. ssnnen 41

I 0 d o 1T G @] 42 0 T 10T L3OO PSRRIt 42
3.4.7. DElEtiNg OBJECES ..uuuuuuiiiii s aannnn 42
342 VIieWING @ Chart .o 42
R RO T=T | (gL - T 1Y 1Y I 42

B POWEE SYNTAX ...coiiiiiiiiiieieeiiiiiiiiiiiereeeeetttttttaeaeeeeetetttetaassseeeeetressasassseseeeseesssnnsssssseersesssssnsnssseesensesssnnnnseses 43
ZZ 0 TR 12 4 o o [T o o T 43
4.2, EXamMPIES Of POWET SYNTAX ..vvviieiiieieiiiiiiiieieeeeeeeceiireeeeeeeeeseaareeeeeeeessssnnsseaaeeesseesssssnssneeesesssessnssnsnees 44
4.2.1. EXxample 1:USING @ fOr LOOP ceeiieiieeiiiiieeie ettt e e e eeeeree e e e e e e e s nereeeee e e e s essnnnnnneaeeeesesnnnnes 44
4.2.2.Example 2: Creating a Simple SUDIOUTINGccoiiiiiiiiiiii 44
4.3. Predefined Power SyntaxX SUBIOULINGESc.eeviiiiiieiie et e e e e e e e e e e s eeeeeeeas 45
B A [V 1 =] (S o T =131 o] o) PP 45
4.3.2. getValue(Object Name, Parameter Name)cccvvviiiiiiiiiiiiiiiie e 45
4.3.3. SNOWPKGS() +vvvvtvtvtuitiuiutiiiitiittieititittatt ittt bttt bttt sttt bttt bttt bttt bt bbbttt tn b et nnnnns 45
4.3.4. SNOWSUDS() «uuueueiieieiiseiesesesesessssssss s s s s s s s s s s s s s ssssssssnsssssssssnsssnsnsnsnnnnn 46
4.3.5. SNOWVAIS() 1.uuuuiuuiiiiiiieieiesers s ssssssssssssssssssnssssssssnnsnsnnnnn 46
4.3.6. VEIDOSEON() coeiieeiiieiitteee e ettt e e ettt et e e e et et e e e e e et e e e e e s e et aeeteeeeesaanrreneeeas 46
5.LIN@ INtErface MOccooueiiiiiiiiiiee ettt e s ettt e e et e e e s e e s et r e e e serreeeeas 47
Lo T8 I [0Yd ZeTe [¥ Tt AT o HPS PP PP PPPPPPPPPPPPPRE 47
5.2.LiN€ INTEITACE MOE .ttt e et e e st e s sttt e e s st eeessabteeesenbaeeeanns 48
5.2.1.Lists Of COMMANGSeeiieiiiiieiiiiiieeee e e eeceti et e e e e e e eter e e e eeeeessaearareeeeeeeessnsssreaeeaessessssnnsnnnees 49
5.2. 2. VIEWET HOTKEYS ...ttt bbbttt bbbttt bttt bbb bsbsassnbnnnees 49
I A @1 [U] - | (o] G PP PPPRPRPRPOPRS 49
5.2.4. getSTAte COMMANG ...uuuiiiiiiiiiiiieitiiereeteeeeeeeaeaeeeeeeeaeaeeaeeeaaees e esaesesseeaesessessssssssssssssssssssssssssssnnns 49
5.2.5.Repeating CCL COMMANASuuiiiiiiriiiieieieresssessnsnsssnnnns 49
SN =Gl d[aTe =T a 1= | K @] 01 00T 1 To IO T 49
5.2, 7. QUITHING teetitiiiiiieeee ettt e e e ee ettt e e e e e eettettbaiesseeeeteeersansssseeeseeessnnsanssseeresssssnnsnssseesssnnssnnnnnns 49
LT T - 1101 o [USSR URSPPPRt 50
5.3 BatCN MO ... nnnnn 50
5.3.1.Example: Generating a Similar Mesh from Different Curve Filescceeviveieviiiieieereeeeercnnen, 50

6. MESRING REFEIENCE ...t e e e e e e et aeeeeeeesennntsnaeeeeeesesssnnnsanaeeeeens 53

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. v

vi

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

List of Figures

1.7, ANSYS TUIDOGIA LAUNCREKuiiiiiiiiiie ettt e e e e ettt e e e e e s ettt e e e e e s e ssaabbaaeeeeeees

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

vii

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
viii of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 1: Ansys TurboGrid Launcher

This chapter describes the Ansys TurboGrid Launcher in detail:
1.1.The Ansys TurboGrid Launcher Interface
1.2.Customizing the Ansys TurboGrid Launcher

1.1.The Ansys TurboGrid Launcher Interface

The layout of the Ansys TurboGrid Launcher is shown below:

Figure 1.1: Ansys TurboGrid Launcher

B ANSYS TurboGrid Launcher — O X

Menu Bar—s Fil= FEdit CFX Show Tools User Help
Working Directory

Tool Bar —= Selector
TurboGrid
Working Directory | C:/My_working_direciory w j E—'— Explore Working
Directory

Output —s (Windows Only)

Window

The Ansys TurboGrid Launcher consists of a menu bar, a toolbar for launching applications, a working
directory selector, and an output window where messages are displayed. On Windows platforms, an
icon to start Windows Explorer in the working directory appears next to the directory selector.

The following sections describe parts of the launcher:
1.1.1.Menu Bar
1.1.2.Toolbar

1.1.3.Working Directory Selector
1.1.4.Output Window

1.1.1. Menu Bar

The Ansys TurboGrid Launcher menus are described briefly in the following table, and in more detail
following the table.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Ansys TurboGrid Launcher

1.1.1.1.File Menu

Saves the contents of the text output window and to close the Ansys TurboGrid Launcher.

1.1.1.1.1.Save As
Saves the contents of the output window to a file.

1.1.1.1.2. Quit

Shuts down the Ansys TurboGrid Launcher. Any programs already launched will continue to run.

1.1.1.2. Edit Menu

Clears the text output window, finds text in the text output window and sets options for the Ansys
TurboGrid Launcher.

1.1.1.2.1.Clear
Clears the output window.
1.1.1.2.2.Find

Displays a dialog box where you can search the text in the output window.

1.1.1.2.3. Options

Presents the Options dialog box, which enables you to change the appearance of the Ansys
TurboGrid Launcher. Once you have configured the settings, click Apply to apply the settings
tentatively. Click OK to accept the settings. Click Restore to revert the settings to the previously
accepted configuration.

1.1.1.2.3.1. Graphical User Interface Style

You can choose any one of the listed interface styles to change the look and feel of the user
interface.

1.1.1.2.3.2. Font and Formatted Font

The button to the right of Font sets the font used anywhere outside the text output window.
The button to the right of Formatted Font applies only to the text output window. Clicking
either of these buttons opens the Select Font dialog box.

1.1.1.3.CFX Menu

1.1.1.3.1.TurboGrid 2021 R2

Runs Ansys TurboGrid, with the working directory as specified in Working Directory Selector (p. 13).

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
10 of ANSYS, Inc.and its subsidiaries and affiliates.

The Ansys TurboGrid Launcher Interface

1.1.1.3.2. Other Ansys CFX Applications

The Ansys TurboGrid Launcher will search for installed Ansys CFX applications (for example, CFX-
Pre, CFD-Post) and provide a menu entry to launch each application. If an application is not found,
you can add it; for details, see Customizing the Ansys TurboGrid Launcher (p. 13).

1.1.1.4.Show Menu

1.1.1.4.1.Installation
Displays information about the version of Ansys TurboGrid that you are running.
1.1.1.4.2.All

Displays all of the available information, including information about your system, installation
and variables.

1.1.1.4.3.System

Displays information about the Ansys TurboGrid installation and the system on which it is being
run.

1.1.1.4.4.Variables

Displays the values of all the environment variables that are used in Ansys TurboGrid.

1.1.1.5.Tools Menu

Enables you to access license-management tools and a command line for running other Ansys CFX
utilities.

1.1.1.5.1. Ansys Client Licensing Utility
Enables you to configure connections to Ansys License Managers.
1.1.1.5.2. Command Line

Starts a command window from which you can run any of the Ansys TurboGrid commands via
the command line interface. The command line will be set up to run the correct version of Ansys
TurboGrid and the commands will be run in the current working directory.

If you do not use the Tools > Command Line command to open a command window, then you
will have to either type the full path of the executable in each command, or explicitly set your
operating system path to include the <CFXROOT>/ bi n directory.

You may want to start Ansys TurboGrid from the command line rather than by clicking the ap-
propriate button on the Ansys TurboGrid Launcher for the following reasons:

+ Ansys TurboGrid contains some utilities (for example, a parameter editor) that can be run only
from the command line.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 1

Ansys TurboGrid Launcher

+ You may want to specify certain command line arguments when starting up a component so
that it starts up in a particular configuration.

+ If you are having problems with a component, you may be able to get a more detailed error
message by starting the component from the command line than you would get if you started
the component from the launcher. If you start a component from the command line, any error
messages produced are written to the command line window.

1.1.1.5.3. Edit File

Opens a browser to edit the text file of your choice in a platform-native text editor. Which text
editor is called is controlled by the settings in <CFXROOT>/ et ¢/ | auncher/ shar ed. ccl .

1.1.1.6.User Menu

The User menu is provided as an example. You can add your own applications to this menu, or
create new menus. For details, see Customizing the Ansys TurboGrid Launcher (p. 13).

1.1.1.7.Help Menu

The Help menu has the following commands:
TurboGrid Launcher

Opens Using the Ansys TurboGrid Launcher in the TurboGrid Introduction.
Contents

Opens a page that lists various help resources associated with this product.
[various help resources]

Each of these commands goes directly to a particular help resource.
Ansys Product Improvement Program

Provides a brief description of, and enables you to control participation in, the Ansys Product
Improvement Program.

About TurboGrid Launcher
This gives the point releases and software patches that are installed.
Help on Help

Opens documentation about the help system: Ansys TurboGrid Help and Conventions in the
TurboGrid Introduction.

1.1.2.Toolbar

The toolbar contains shortcuts to the main components of Ansys CFX, for example Ansys TurboGrid,
CFX-Pre, CFX-Solver Manager and CFD-Post. Pressing any of the buttons will start up the component

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
12 of ANSYS, Inc.and its subsidiaries and affiliates.

Customizing the Ansys TurboGrid Launcher

in the specified working directory. The equivalent menu entries for launching the components also
show a keyboard shortcut that can be used to launch the component.

1.1.3.Working Directory Selector

While running Ansys TurboGrid, all the files that are created will be stored in the working directory.
To change the working directory, you can do any of the following:

+ Type the directory name into the box and press Enter.

+ Click the down-arrow icon (Ll) next to the directory name. This displays a list of recently used dir-
ectories.

(e}

- Click Browse '~ to browse to the directory that you want.

1.1.4. Output Window

The output window is used to display information from commands in the Show menu. You can right-
click in the output window to show a shortcut menu with the following options:

+ Find: Displays a dialog box where you can enter text to search for in the output.
+ Select All: Selects all the text.

+ Copy Selection: Copies the selected text.

« Save As: Saves the output to a file.

+ Clear: Clears the output window.

1.2. Customizing the Ansys TurboGrid Launcher

Many parts of the Ansys TurboGrid Launcher are driven by CCL commands contained in configuration
files. Some parts of the launcher are not editable (such as the File, Edit and Help menus), but others
parts enable you to edit existing actions and create new ones (for example, launching your own applic-
ation from the User menu). The following sections outline the steps required to configure the launcher.
The configuration files are located in the <CFXROOT>/ et ¢/ | auncher/ directory (where <CFXROOT>
is the path to your installation of Ansys TurboGrid). You can open these files in any text editor, but you
should not edit any of the configuration files provided by Ansys TurboGrid, other than the User . ccl
configuration file.

1.2.1.CCL Structure

The configuration files contain CCL objects that control the appearance and behavior of menus and
buttons that appear in the Ansys TurboGrid Launcher. There are three types of CCL objects: GROUP,
APPLI CATI ON and DI VI DER objects. The fact that there are multiple configuration files is not im-
portant; applications in one file can refer to groups in other files.

An example of how to add a menu item for the Windows calculator to the launcher is given in Example:
Adding the Windows Calculator (p. 17).

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Ansys TurboGrid Launcher

1.2.1.1. GROUP

GROUP objects represent menus and toolbar groups in the Ansys TurboGrid Launcher. Each new
GROUP creates a new menu and toolbar. Nothing will appear in the menu or toolbar until you add
APPLI CATI ON or DI VI DER objects to the group. An example of a GROUP object is given below:

GROUP: CFX
Position = 200
Menu Name = &CFX
Show I n Tool bar = Yes
Show I n Menu = Yes
Enabl ed = Yes

END

« The group name is set after the colon. In this case, it is "CFX". This is the name that APPLI CATI ON
and DI VI DER objects will refer to when you want to add them to this group. This name should
be different to all other GROUP objects.

+ Posi ti on refers to the position of the menu relative to others. The value should be an integer
between 1 and 1000. Groups with a higher Posi t i on value, relative to other groups, will have
their menu appear further to the right in the menu bar. Referring to Figure 1.1: Ansys TurboGrid
Launcher (p. 9), CFX has a lower position value than the Ansys group. The File and Edit menus
are always the first two menus and the Help menu is always the last menu.

+ The title of the menu is set under Menu Narme (this menu has the title CFX). The optional am-
persand is placed before the letter that you want to act as a menu accelerator (for example,
Alt+C displays the CFX menu). You must be careful not to use an existing menu accelerator.

+ The creation of the menu or toolbar can be toggled by setting the Show i n Menu and Show
i n Tool bar options to Yes or No respectively. For example, you may want to create a menu
item but not an associated toolbar icon.

+ Enabl ed sets whether the menu/toolbar is available for selection or is grayed out. Set the option
to No to gray it out.

1.2.1.2. APPLICATION

APPLI CATI ON objects create entries in the menus and toolbars that will launch an application or
run a process. Two examples are given below with an explanation for each parameter. The first
example creates a menu entry in the Tools menu that opens a command line window. The second
example creates a menu entry and toolbar button to start CFX-Solver Manager.

APPL| CATI ON: Command Line 1
Posi tion = 300
G oup = Tool s
Tool Tip = Start a wi ndow i n whi ch CFX commands can be run
Menu Item Nane = Command Line
Command = <wi ndi r >\ syst enB2\ cnd. exe
Argunments = /c start
Show I n Tool bar = No
Show In Menu = Yes

Enabl ed = Yes
OS List = wnnt
END

APPL| CATI ON: CFXSM
Position = 300
G oup = CFX

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
14 of ANSYS, Inc.and its subsidiaries and affiliates.

Customizing the Ansys TurboGrid Launcher

Tool Tip = Launches Ansys CFX- Sol ver Manager
Menu Item Nane = CFX- Sol ver Manager
Command = cf x5sol ve
Show I n Tool bar = Yes
Show I n Menu = Yes
Enabl ed = Yes
Tool bar Name = Ansys CFX- Sol ver Manager
I con = LaunchSol vel con. xpm
Shortcut = Ctrl +S
END

The application name is set after the colon, in the first example it is "Conmrand Li ne 1".This
name should be different to all other APPLI CATI ON objects.

Posi ti on:sets the relative position of the menu entry. The value should be an integer between
1 and 1000. The higher the value, relative to other applications that have the same group, the
further down the menu or the further to the right in a toolbar the entry will appear. If you do
not specify a position, the object assumes a high position value (so it will appear at the bottom
of a menu or at the right of a group of buttons).

G oup: sets the GROUP object to which this application belongs. The value must correspond to
the name that appears after "GROUP:" in an existing GROUP object. The menu and/or toolbar
entry will not be created if you do not specify a valid group name. The GROUP object does not
have to be in the same configuration file.

Tool Ti p:displays a message when the mouse pointer is held over a toolbar button. In the
‘Command Line 1" example above, the Tool Ti p entry is not used since a toolbar button is not
created. This parameter is optional.

Menu | tem Name:sets the name of the entry that will appear in the menu. If you do not specify
a name, the name is set to the name of the APPLI CATI ON: object. The optional ampersand is
placed before the letter that you want to have act as a menu accelerator (for example, alt+c then
s will start CFX-Solver Manager. Alt+c selects the CFX menu and "s" selects the entry from the
menu). You must be careful not to use an existing menu accelerator.

Comand: contains the command to run the application. The path can be absolute (that is, use
a forward slash to begin the path on Linux, or a drive letter on Windows). If an absolute path is
not specified, a relative path from <CFXROOT>/ bi n/ is assumed. If no command is specified,
the menu item/toolbar button will not appear in the Ansys TurboGrid Launcher. The path and
command are checked when the launcher is started. If the path or command does not exist, the
menu item/toolbar button will not appear in the launcher. You may find it useful to include en-
vironment variables in a command path; for details, see Including Environment Variables (p. 16).

Ar gunent s: specifies any arguments that need to be passed to the application. The arguments
are appended to the value you entered for Cormand. You do not need to include this parameter
as there are no arguments to pass. You may find it useful to include environment variables in
the arguments; for details, see Including Environment Variables (p. 16).

Distinct arguments are space-separated. If you need to pass an argument that contains spaces
(for example, a Windows filepath) you should include that argument in double quotes, for example:

Argurments = "C:\Docunents and Settings\User" arg2 arg3

Show I n Tool bar: determines if a toolbar button is created for the application. This optional
parameter has a default value of Yes.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates. 15

Ansys TurboGrid Launcher

« Show I n Menu:determines if a menu entry is created for the application. This optional para-
meter has a default value of Yes.

+ Enabl ed: allows you to gray out the menu entry and toolbar button. Set this parameter to No
to gray out the application. This optional parameter has a default value of Yes.

+ OS Li st is an optional parameter that allows you to set which operating system the application
is suitable for. If OS Li st is not supplied, the launcher will attempt to create the menu item
and toolbar button on all platforms.

For example, the command to open a command line window varies depending on the operating
system. In the ‘Command Line 1’ example above, the application only applies to Windows plat-
forms. To complete the OS coverage, the launcher configuration files contain more ‘Command
Line’ applications that apply to different operating systems.

OS Li st can contain the following values: wi nnt (Windows), | i nux-i a64 (64-bit Linux).

« Tool bar Nane: sets the name that appears on the toolbar button. This parameter is optional
(since you may only want to show an icon).

| con: specifies the icon to use on the toolbar button and in the menu item. The path can be
absolute (that is, use a forward slash to begin the path on Linux, or a drive letter on Windows).
If an absolute path is not specified, a relative path from <CFXROOT>/ et ¢/ i cons is assumed.
The following file formats are supported for icon image files: Portable Network Graphics (png),
Pixel Maps (ppm xpm and Bitmaps (bnp). Other icons used in the launcher are 32 pixels wide
and 30 pixels high. This parameter is optional. If it is not included, an icon will not appear.

+ Shor t cut : specifies the keyboard shortcut that can be pressed to launch the application. You
must be careful not to use a keyboard shortcut that is used by any other APPLI CATI ON object.

1.2.1.2.1.Including Environment Variables

In can be useful to use environment variables in the values for some parameters. You can specify
an environment variable value in any parameter by including its name between the < > symbols.
In the ‘Command Line 1’ example above, <wi ndi r > is used in the Comrand parameter so that
the command would work on different versions of Windows. <wi ndi r > is replaced with the
value held by the wi ndi r environment variable. The Conmand and Ar gunent parameters are
the only parameters that are likely to benefit from using environment variables. Environment
variables included in the Ar gunrent s parameter are expanded before they are passed to the
application.

1.2.1.3.DIVIDER

DI VI DER objects create a divider in a menu and/or toolbar (see the Tools menu for an example).
An example of the CCL for DI VI DER objects is shown below.

DI VIDER Tools Divider 1
Position = 250
Group = Tool s
CS List = winnt, linux-ia64
END

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
16 of ANSYS, Inc. and its subsidiaries and affiliates.

Customizing the Ansys TurboGrid Launcher

The Posi tion, G oup and OS Li st parameters are the same as those used in APPLI CATI ON
objects. For details, see APPLICATION (p. 14).

1.2.2. Example: Adding the Windows Calculator

The following CCL is the minimum required to add the Windows calculator to the Ansys TurboGrid
Launcher:

GROUP: W ndows Apps
Menu Nane = W ndows
END
APPL| CATI ON: Cal ¢
Group = Wndows Apps
Command = <wi ndi r >\ syst enB2\ cal c. exe
Tool bar Name = Cal c
END

Although the parameter Toolbar Name is not strictly required, you would end up with a blank toolbar
button if it were not set.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 17

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 2: CFX Command Language

* Introduction (p. 19)
+ CCL Syntax (p. 19)
+ Object Creation and Deletion (p. 24)

+ Ansys CFX Expression Language (p. 25)

2.1.Introduction

The CFX Command Language (CCL) is the internal communication and command language of Ansys
TurboGrid. It is a simple language that can be used to create objects or perform actions in the Post-
processor. All CCL statements can be classified into one of three categories.

1. Object and parameter definitions: CCL object and parameter definitions can be used to create or
delete objects. For details, see Object Creation and Deletion (p. 24). A list of all objects and para-
meters that can be used in Ansys TurboGrid is available in the CCL details chapter in the reference
guide.

2. Actions: CCL actions are commands that perform a specific task (for example, reading a session
file). For details, see Command Actions (p. 27).

3. Power Syntax: Using the Perl programming language, CCL supports programming through Power
Syntax with loops, logic and custom macros (subroutines). With Power Syntax, Perl commands can
be embedded into CCL to achieve powerful quantitative results. For details, see Power Syntax (p. 43).

State and session files contain object definitions in CCL. In addition, session files can contain CCL action
commands. The CCL written to these files can be viewed and modified in a text editor. You can also
use a text editor to create your own session and state files to read into Ansys TurboGrid.

Advanced users can interact with Ansys TurboGrid directly through CCL by entering it in the Command
Editor dialog box or by running Ansys TurboGrid in line interface mode. See Command Editor Command
in the TurboGrid User's Guide and Line Interface Mode (p. 47) for details.

2.2, CCL Syntax

The topic(s) in this section include:
+ Basic Terminology (p. 20)

+ Simple Syntax Details (p. 20)

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates. 19

CFX Command Language

2.2.1.Basic Terminology

The following is an example of a CCL object defining an isosurface.

USER DEFI NED:
| SOSURFACE: |sol
Variabl e = M ni mum Face Angl e
Val ue = 10 [degree]
Color = 1,0,0
Transparency = 0.5
END
END

+ | SOSURFACE and USER DEFI NED are object types

* | sol is an object name

« Variable = M ninum Face Angl e is a parameter
« Vari abl e is a parameter name

« M ni mum Face Angl e is a parameter value

+ If the object type | SOSURFACE does not need a name it is called a singleton object. Only one
object of a given singleton type can exist.

2.2.1.1.The Data Hierarchy

Data is entered via parameters. These are grouped into objects that are stored in a tree structure.
Objects may be at the ‘Top Level, or within other objects. Objects inside other objects are said to
be ‘nested.

OBJECT1: outer object nane
OBJECT2: inner object nane
nanmel = val ue

nanme2 = val ue

END

Objects and parameters may be placed in any order, provided that the information is set prior to
being used further down the file. If data is set in one place and modified in another the latter
definition overrides the first.

2.2.2.Simple Syntax Details

The following applies to any line that is not a Power Syntax (or action) line. (That is, any line that
does not start witha! or >))

2.2.2.1.Case Sensitivity

Everything in the file is sensitive to case.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
20 of ANSYS, Inc.and its subsidiaries and affiliates.

CCL Syntax

Case sensitivity is not ideal for users typing in many long parameter names, but it is essential for
bringing the Ansys CFX Expression Language (CEL) into CCL. This is because some names used to
define CCL objects (such as Machi ne Dat a) are used to construct corresponding CEL names.

For simplicity and consistency, we recommend the following convention is used in the standard
code and its documentation:

+ singletons and object types use upper case only

+ parameter names, and pre-defined object names, are mixed case. We try to follow these con-
ventions:

- Major words start with an upper case letter, while minor words such as prepositions and con-
junctions are left in lower case ("Number of Blade Blocks", for example).

- Case is preserved for familiar names (for variables "k" or "r", or for the abbreviation "RNG", for
example).

+ user object names conventions are left to you to choose.

2.2.2.2.CCL Names Definition

Names of singletons, types of objects, names of objects, and names of parameters all follow the
same rules:

+ In simple syntax, a CCL name must be at least one character. This first character must be alpha-
betic; there may be any number of subsequent characters and these can be alphabetic, numeric,
space or tab.

+ The effect of spaces in CCL names is:
— Spaces appearing before or after a name are not considered to be part of the name.
- Single spaces appearing inside a name are significant.

- Multiple spaces and tabs appearing inside a name are treated as a single space.

2.2.2.3.Indentation

Nothing in the file is sensitive to indentation. The indentation is used, however, when displaying
contents of the file for easier reading.

2.2.2.4.End of Line Comment Character

The # character is used for commenting. Any text to the right of this character is treated as a
comment. Any characters may be used within comments.

2.2.2.5. Continuation Character

If a line ends with the character \ the following line is linked to the existing line. There is no restric-
tion on the number of continuation lines.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 21

CFX Command Language

2.2.2.6. Named Objects

A named object consists of an object type at the start of a line, followed by a : followed by an
object name. Subsequent lines may define parameters and child objects associated with this object.
The object definition is terminated by the string " END" on a line by itself.

Object names must be unique within the given scope, and the name must not contain an underscore.

2.2.2.7.Singleton Objects

A singleton object consists of an object type at the start of a line, followed by a : . Subsequent lines
may define parameters and child objects associated with this object. The object definition is termin-
ated by the string " END" on a line by itself.

The difference between a singleton object and a named object is that (after the data has been
processed), a singleton can appear just once as the child of a parent object, whereas there may be
several instances of a named object of the same type defined with different names.

2.2.2.8.Parameters

A parameter consists of a parameter name at the start of a line, followed by an =, followed by a
parameter value. A parameter may belong to many different object types. For example Tr anspar
ency = 0.6 may belong to a hub geometry object and Tr anspar ency = 0. 0 may belong
to a volume mesh analysis object. Both refer to the same definition of transparency in the rules
file.

2.2.2.9. Lists

Lists are used within the context of parameter values and are comma separated.

2.2.2.10.Parameter values

All parameter values are initially handled as data of type string, and should first of all conform to
the following definition of permitted string values:

2.2.2,10.1.String
* Any characters can be used in a parameter value.

+ String values or other parameter type values are normally unquoted. If any quotes are present,
they are considered part of the value. Leading and trailing spaces are ignored. Internal spaces
in parameter values are preserved as given, although a given application is free to subsequently
assume a space condensation rule when using the data.

« The characters $ and # have a special meaning. A string beginning with $ is evaluated as a
Power Syntax variable, even if it occurs within a simple syntax statement. This is useful for
performing more complex Power Syntax variable manipulation, and then using the result as
part of a parameter or object definition. The appearance of # anywhere in the CCL file denotes
the start of a comment.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
22 of ANSYS, Inc.and its subsidiaries and affiliates.

CCL Syntax

 The characters such as [,],{ and } are special only if used in conjunction with $. Following
a $, such characters terminate the preceding Perl variable name.

+ Other characters that might be special elsewhere in Power Syntax are escaped automatically
when they appear in parameter values. For example, @%and & are escaped automatically.

+ Parameter values can contain commas, but if the string is processed as a list or part of a list
then the commas may be interpreted as separators (see below under list data types).

Some examples of valid parameter values using special characters in Power Syntax are:

Esti mated cost = \$500

Title = Run\#1

Sys Command = "echo “Starting up Stress solver” ; fred.exe &
Tenmporary = $nmyArray| 4]

Option = $nyHash{"foo0"}

Fuel = C3${nunber Cat ons} H${ nunber Hat ons}

Parameter values for data types other than string additionally conform to one of the following
definitions.

2.2.2.10.2. String List

A list of string items separated by commas. Items in a string list should NOT contain a comma
unless contained between parentheses. One exception can be made if the string list to be is in-
terpreted as a Real List (see below). Otherwise each item in the string list follows the same rules
as string data. Example usage:

names = one, two, three, four

2.2.2.10.3.Integer

Sequence of digits containing no spaces or commas. If a real is specified when an integer is
needed the real is rounded to the nearest integer. Example usage:

b = 32
2.2.2.10.4.Integer List
List of integers, comma separated. Example usage:

nunbers = 52, 65001, 2

2.2.2.10.5.Real

A single precision real number that may be specified in integer, floating point or scientific format,
followed optionally by a dimension. Units use the same syntax as CEL.

Expressions can include commas inside function call argument lists. Example usage:

a = 12.24

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 23

CFX Command Language

1. 224E01
12.24 [m s~-1]

A real may also be specified as an Expression such as:

nyvel ~2 + b
max(b, 2. 0)

2.2.2.10.6.Real List

List of reals, comma separated. Note that all items in the list must have the same dimensions.
Those items that are expressions can include commas inside function call argument lists, and the
enclosed commas are ignored when the list is parsed into individual items. Example usage:

a=10([ms], 2.0 [ms], 3.0 [ms], 2.0*myvel, 4.0 [cms]

2.2.2.10.7.Logical

Several forms are acceptable: YES or TRUE or 1 or ON are all equivalent; NOor FALSE or O or
OFF are all equivalent; initial letter variants Y, T, N, F are accepted (Ois not accepted for On/Cf f);
all case variants are accepted. The preferred form, recommended for GUI output files and for user
documentation is, Yes/No. Logical strings are also case insensitive (YeS/ nO). Example usage:

answer = 1

2.2.2.10.8. Logical List

List of Logicals, comma separated. Example usage:

answers = oN, YES, 0, fALse, truE

2.2.2.11.Escape Character

The \ character is used as an escape character so characters like $ or # can be used in strings, for
example.

2.3.0bject Creation and Deletion

You can create objects in Ansys TurboGrid by entering the CCL definition of the object into the Command
Editor dialog box, or by reading the object definition from a session or state file. The object is created

and any associated graphics shown in the viewer. For a list of valid CCL objects, see the CCL details
chapter in the reference guide.

You can modify an existing object by entering the object definition with the modified parameter settings
into the Command Editor dialog box. Only those parameters that are to be changed need to be entered.
All other parameters remain unchanged.

There may be a significant degree of interaction between objects in Ansys TurboGrid. For example, a
contour plot may depend on the location of an underlying plane, or an isosurface may depend on the

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
24 of ANSYS, Inc.and its subsidiaries and affiliates.

Ansys CFX Expression Language

definition of a CEL expression. If changes to one object affect other objects, the other objects are updated
automatically.

To delete an object, type >del et e <Obj ect Pat h>. If you delete an object that is used by other
objects, warnings result, but the object is deleted.

An object at the top level can be deleted by specifying its name. To delete a nested object you must
enter the path of the object you want to delete. An object’s path has the syntax:

/ par ent Cbj Type: par ent Gbj Nare/ . . ./ obj Type: obj Nanme

Singletons must be specified in paths as

/ SI NGLETON: SI NGLETON

For example, to delete an isosurface you have created called Isosurface 1, enter

/ USER DEFI NED: USER DEFI NED/ | SOSURFACE: | sosurface 1

2.4. Ansys CFX Expression Language

The Ansys CFX Expression Language (CEL) is integrated into Ansys TurboGrid. You can use an expression
defined with CEL in place of any number in TurboGrid. Within TurboGrid you can:

+ Create new expressions.

+ Set any numeric parameter in an TurboGrid object based on an expression (and the object updates
if the expression result changes).

+ Create user-defined variables from expressions.
+ Directly use the quantitative functions in an expression.
+ Specify units as part of an expression.

All expressions are defined in the EXPRESSIONS singleton object. Each expression is a simple

name = expressi onstatement within that object. New expressions are added by defining new
parameters within the EXPRESSIONS object (the EXPRESSIONS object is special, in that it does not have
a pre-defined list of valid parameters).

Note:

TurboGrid evaluates CEL expressions with single (not double) precision.

Important:

Since Power Syntax uses Perl mathematical operators, you should exercise caution when
combining CEL with Power Syntax expressions. For example, in CEL, 2° is represented as 22,
but in Perl, would be written 2* * 2. If you are unsure about the validity of an operator in
Perl, consult a Perl reference guide.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates. 25

CFX Command Language

2.4.1.CEL Functions, Constants and System Variables

2.4.1.1.CEL Standard Functions

The following is a list of standard functions that are available in Ansys TurboGrid.

Note:

[1 denotes a dimensionless quantity. [a] denotes any dimensions of first operand.

Result Function Operands
[sin ([radian])
[1 cos ([radian])
[1 tan ([radian])
[radian] asin ()
[radian] acos (m);
[radian] atan (D
[radian] atan2 (CLen

[] exp (m);

[loge (D

[1 log10 (n

[a] abs ([a])
[an0.5] sqrt (fal)

[] step ()

[a] min ([al,fal)
[a] max ([al,[a])
2.4.1.2.CEL Constants

The following predefined constants can be used within CEL expressions.

Constant Units Description

e <none> Constant: 2.7182817

g m sA-2 Acceleration due to
gravity: 9.806

pi <none> Constant: 3.1415927

R J molA-1 KA-1 Universal Gas Constant:
8.31447

26

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and dffiliates.

Chapter 3: Command Actions

* Introduction (p. 27)
+ File Operations from the Command Editor Dialog Box (p. 28)
+ Quantitative Calculations in the Command Editor Dialog Box (p. 37)

+ Other Commands (p. 42)

3.1.Introduction

The Command Editor dialog box in Ansys TurboGrid can be used to edit or create graphics objects,
perform some typical user actions (reading or creating session and state files, for example) and enter
Power Syntax. This section describes the typical user actions you can perform from the Command Ed-
itor dialog box.

For an introduction to the Command Editor dialog box see Command Editor Command in the TurboGrid
User's Guide.

For details on editing and creating graphics objects using the CFX Command Language in the Command
Editor dialog box see CFX Command Language (p. 19).

Power Syntax commands are preceded by the ! symbol. For details on using Power Syntax in the
Command Editor dialog box see Power Syntax (p. 43).

Action statements cause Ansys TurboGrid to undertake a specific task, usually related to the input and
output of data from the system. All actions typed into the Command Editor dialog box must be pro-
ceeded with the > symbol. Actions in session files must also be preceded by the > symbol.

When running Ansys TurboGrid in line interface mode, the TG> command prompt is shown in a Windows
Command Prompt or UNIX shell. All the actions described in this section, along with some additional
commands, can be typed at the command prompt. You do not have to precede commands with the

> symbol when running in line interface mode. For information about using line interface mode, see

Line Interface Mode (p. 47).

Many actions require additional information to perform their task (the name of a file to load or the type
of hardcopy file to create, for example). By default, these actions get the necessary information from a
specific associated CCL singleton object. For convenience, some actions accept a few arguments that
can be used to optionally override the commonly changed object settings. If multiple arguments for

an action are specified, they must be separated by a comma.

3.1.1.Command Actions Example

The >pri nt command saves the viewer image to a file. All the settings for >pr i nt are read from
the HARDCOPY: singleton object. However, if you want, you can specify the name of the hardcopy

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 27

Command Actions

file as an argument to the >pri nt command. The following CCL example demonstrates both of
these alternatives.

Define settings for saving a picture

HARDCOPY:

Har dcopy Format = j pg

Har dcopy Filenane = default.jpg

| mage Scale = 70

White Background = O f

END

#Create an output file based on the settings i n HARDCOPY
>print

#Create an identical output file with a different fil ename
>print another_file.jpg

3.2.File Operations from the Command Editor Dialog Box

The File Operations available from the Command Editor dialog box are outlined in the table below
with a summary of the function performed by each option.

Command Description

savestate Save the current state to a file. See Save State Files (p. 28).

readstate Load a state from an existing state file. See Read State Files (p. 30).
savetopology Save the current topology to a file. See Save Topology Files (p. 32).
savemesh Save the current mesh to a file. See Save Mesh Files (p. 33).

saveblade Save the current blade to a file. See Save Blade Files (p. 33).

session start Set the name of a new session file and start recording to it. Stop recording

it. See Create Session Files (p. 34).
session stop

readsession Load and execute an existing session file. See Read Session Files (p. 36).

print Save the image shown in the viewer window to a file. See Create
Hardcopy (p. 37).

tetin Save the current geometry to a . t et i n file. See Export Geometry (p. 37).

3.2.1.Save State Files

>savest ate [npode=<none | overwite>][fil enane=<fil enane>]

State files can be used to quickly load a previous state into Ansys TurboGrid. State files can be gener-

ated manually using a text editor, or from within Ansys TurboGrid by saving a state file. The

>savest at e command writes the current Ansys TurboGrid state to a file from the Command Editor

dialog box.
>savest at e supports the following options:

« node = <none | overwite>

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
28 of ANSYS, Inc.and its subsidiaries and affiliates.

File Operations from the Command Editor Dialog Box

If mode is none, the executor creates a new state file, and if the specified file exists, an error is
raised. If mode is over wr i t e, the executor creates a new state file, and if the file exists, it is deleted
and replaced with the latest state.

filename = <fil ename>

Specifies the path and name of the file that the state is written to. If no filename is specified, the
STATE singleton object is queried for the filename. If the STATE singleton does not exist, then an
error is raised indicating that a filename must be specified.

3.2.1.1.savestate Command Examples

The following are example >savest at e commands, and the expected results. If a STATE singleton
exists, the values of the parameters listed after the >savest at e command replace the values

stored in the STATE singleton object. For this command, the f i | enane command parameter

value replaces the st at e fi | ename parameter value in the STATE singleton, and the node
command parameter value replaces the savest at e npde parameter value in the STATE singleton.

> savestate

This command writes the current state to the filename specified in the STATE singleton. If the
mode in the STATE singleton is none, and the filename exists, an error is returned. If the mode in
the STATE singleton is over wr i t e, and the filename exists, the existing file is deleted, and the
state is written to the file. If the STATE singleton does not exist, an error is raised indicating that
a filename must be specified.

> savestate nobde = none

This command writes the current state to the file specified in the STATE singleton. If the file already
exists, an error is raised. If the STATE singleton does not exist, an error is raised indicating that a
filename must be specified.

> savestate nbde = overwite

This command writes the current state to the file specified in the STATE singleton. If the file already
exists, it is deleted, and the current state is saved in its place. If the STATE singleton does not exist,
an error is raised indicating that a filename must be specified.

> savestate filenane = nystate.tst

This command writes the current state to the nyst at e. t st file. If the STATE singleton exists,
and the savest at e node is set to none, and the file already exists, an error is raised. If the
savest at e node is set to overwr i t e, and the file already exists, the file is deleted, and the
current state is saved in its place. If the STATE singleton does not exist, then the system assumes
a savest at e node of none, and behaves as described above.

> savestate nobde = none, filenane = nystate.tst

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates. 29

Command Actions

This command writes the current state to the nyst at e. t st file. If the file already exists, an error
is raised.

> savestate nbde = overwite, filenane = nystate.tst

This command writes the current state to the nyst at e. t st file. If the file already exists it is deleted,
and the current state is saved in its place.

3.2.2.Read State Files

>readstate [mobde=<overwite | append>][fil ename=<fil enane>, |oad=<true | fal se>]

The >r eadst at e command loads an Ansys TurboGrid State from a specified file.

If a DATA READER singleton has been stored in the state file, the | oad action loads the contents

of the results file. If a state file contains BOUNDARY Objects, and the state file is appended to the
current state (with no new DATA READER Object), some boundaries defined may not be valid for
the loaded results. BOUNDARY objects that are not valid for the currently loaded results file are culled.

>r eadst at e supports the following options:
- node = <overwite | append>

If mode is set to over wr i t e, the executor deletes all the objects that currently exist in the system,
and loads the objects saved in the state file. Overwrite mode is the default mode if none is explicitly
specified. If mode is set to append, the executor adds the objects saved in the state file to the
objects that already exist in the system. If the mode is set to append and the state file contains
objects that already exist in the system, the following logic is used to determine the final result: If
the system has an equivalent object, that is, name and type, then the object already in the system

is modified with the parameters saved in the state file. If the system has an equivalent object in
name only, then the object that already exists in the system is deleted, and replaced with that in

the state file.

« filename = <filenane>
The path to the state file.
« load = <true | fal se>

If load is set to t r ue and a DATA READER object is defined in the state file, then the Results file
is loaded when the state file is read. If load is set to f al se, the results file is not loaded, and the
DATA READER object that currently is in the object Database (if any) is not updated.

The following table describes the options, and the corresponding action taken on the objects and
the DATA READER.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
30 of ANSYS, Inc.and its subsidiaries and affiliates.

File Operations from the Command Editor Dialog Box

Mode Load What happens to the Objects? What
Selection Data happens
Selection to the
DATA
READER?
Overwrite True All user objects are deleted. The loading of the new Itis
results file changes the default objects (boundaries, deleted
wireframe, and so on) including deletion of objects and
that are no longer relevant to the new results. replaced.
Default objects that are not explicitly modified by
object definitions in the state file have all user
modifiable values reset to default values.
Overwrite False All user objects are deleted. All default objects that If it
exist in the state file update the same objects in the exists,
current system state if they exist. Default objects in it
the state file that do not exist in the current state remains
are not created. All user objects in the state file are unchanged
created. regardless
of what
is in the
state
file.
Append True No objects are initially deleted. The default objects It is
in the state file replace the existing default objects. modified
User objects: with
the
+ are created if they have a unique name. new
value
* replace existing objects if they have the same from
name but different type. the
- . . state
+ update existing objects if they have the same file
name and type. '
Append False No objects are initially deleted. Default objects in If it
the state file only overwrite those in the system if exists,
they already exist. User objects have the same it
behavior as the Append/True option above. remains
unchanged
regardless
of what
is in the
state
file.

3.2.2.1.readstate Command Examples

The following are example >r eadst at e commands, and the expected results. If a STATE singleton
exists, the values of the parameters listed after the >r eadst at e command replace the values
stored in the STATE singleton object. For this command, the f i | enane command parameter

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and dffiliates.

Command Actions

value replaces the st at e fi | ename parameter value in the STATE singleton, and the node
command parameter value replaces the r eadst at e node parameter value in the STATE singleton.

> readstate

This command overwrites or appends to the objects in the system using the objects defined in the
file referenced by the st at e fi | enanme parameter in the STATE singleton. If the STATE singleton
does not exist, an error is raised indicating that a filename must be specified.

> readstate filenane = nystate.tst

The r eadst at e node parameter in the STATE singleton determines if the current objects in the
system are deleted before the objects defined in the nyst at e. t st file are loaded into the system.
If the STATE singleton does not exist, then the system objects are deleted before loading the new
state information.

> readstate node = overwite, filename = nystate.tst

This command deletes all objects currently in the system, opens the nmyst at e. t st file if it exists,
and creates the objects as stored in the state file.

> readstate node = append, filename = nystate.tst

This command opens the nyst at e. t st file if it exists, and adds the objects defined in the file to
those already in the system following the rules specified in the above table.

> readstate nbde = overwite

This command overwrites the objects in the system with the objects defined in the file referenced
by the st at e fil enane parameter in the STATE singleton. If the STATE singleton does not
exist, an error is raised indicating that a filename must be specified.

> readstate node = append

This command appends to the objects in the system using the objects defined in the file referenced
by the st at e fil ename parameter in the STATE singleton. If the STATE singleton does not
exist, an error is raised indicating that a filename must be specified.

3.2.3.Save Topology Files

>savet opol ogy [fil enane=<fil enane>]

Topology files can be used to easily use a previously defined topology in Ansys TurboGrid. Topology
files can be generated manually using a text editor, or from within Ansys TurboGrid by saving a topo-
logy file. The >savet opol ogy command writes the current Ansys TurboGrid Topology to a file from
the Command Editor dialog box.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
32 of ANSYS, Inc. and its subsidiaries and affiliates.

File Operations from the Command Editor Dialog Box

>savet opol ogy requires the following argument:

« filename = <fil enanme> Specifies the path and name of the file that the topology is written
to.

3.2.3.1.savetopology Command Example

The following is an example >savet opol ogy command, and the expected results.

> savet opol ogy fil ename = nytopol ogy.tgt
This command writes the current topology to the myt opol ogy. t gt file.

3.2.4.Save Mesh Files

>savenmesh [fil enane=<fil ename>, sol ver=<cfx5 | tascfl ow>]]

Mesh files can be used to load a previously created mesh into Ansys TurboGrid and export a completed
mesh to be used in an Ansys CFX Solver. The >savemnmesh command writes the current Ansys TurboGrid
Mesh to a file from the Command Editor dialog box.

>savenesh requires the following arguments:
« filename = <fil enane>

Specifies the path and name of the file to which the state is written.
-« solver = <cfx5 | tascfl ow

If sol ver is cf x5, the mesh file is saved in the Ansys CFX mesh format (. gt m. If sol ver is
t ascf | ow, the mesh file is saved in CFX-TASCflow format, including a . gr d and . bcf file.

3.2.4.1.savemesh Command Examples

The following is an example >savenesh command, and the expected results.
> savenesh filenane = nynesh.gtm solver = cfx5

The command above writes the current mesh to nynesh. gt min Ansys CFX format.
> savenesh filenane = nynesh, solver = tascflow

The command above writes the current Mesh to nynesh. grd and nmymesh. bcf in CFX-TASCflow
format.

3.2.5.Save Blade Files

>savebl ade [fil ename=<fil ename>]

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 33

Command Actions

Blade files can be used to save the changes made to the geometry. The >savebl ade command
writes the current Ansys TurboGrid Blade to a file from the Command Editor dialog box.

>savebl ade requires the following argument:
« filename = <fil ename>

Specifies the path and name of the file to which the blade is written.

3.2.5.1.saveblade Command Example

The following is an example >savebl ade command, and the expected results.

> savet opol ogy fil enanme = nytopol ogy. t gt
This command writes the current topology to the myt opol ogy. t gt file.

3.2.6.Create Session Files

First, it is necessary to set the name of the file to which your session commands are to be saved. This
can be done by typing the CCL for the singleton object SESSI ON.

In the command window, type:

SESSI O\:
Session Filenane = <fil enane>.tse
END

To begin recording commands, type the following line into the Command Editor dialog box:

>session start [npde=<none | overwite | append>, filenanme=<fil enane>]

To stop recording commands, type the following line into the Command Editor dialog box:

>sessi on stop

Session files can be used to quickly reproduce all the actions performed in a previous Ansys TurboGrid
Session. Session files can be generated manually using a text editor, or from within Ansys TurboGrid
by recording a session. The commands required to write to these files from the Command Editor
dialog box are described below. The >sessi on command handles all Write Session features.

The following options are available to support the functionality:
>sessi on start supports the following options:
- node = <none | overwite | append>

If mode is set to none (the default value), an error is raised if the file already exists. If mode is set
to overwr i t e, the file is deleted and newly created if it already exists. If mode is set to append,
the new session is appended to the end of the existing file.

34

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

File Operations from the Command Editor Dialog Box

filename = <fil ename>

Specifies the filename and path to the session file. If no filename is specified, the SESSION singleton
indicates the filename and the mode to use for overwriting/appending. If no SESSION singleton
exists, an error is raised indicating that a filename must be specified.

The sessi on st op command terminates the saving of a session, and closes the session file. No
options are accepted with this option.

3.2.6.1.session Command Examples

The following are example >sessi on commands, and the expected results. If a SESSION singleton
exists, the values of the parameters listed after the >sessi on command replace the values stored
in the SESSION singleton object. For this command, the f i | enanme parameter value replaces the

sessi on fil ename parameter value in the SESSI ON singleton, and the node command para-
meter value replaces the wri t e sessi on node parameter value in the SESSI ON singleton.

> session start, filename = nysession.tse

This action starts a new session in a filename called nysessi on. t se.If mysessi on. t se already
exists, the overwrite/append behavior is dependent on that set in the SESSI ON singleton. If no
SESSI ON singleton exists, and the nysessi on. t se file also exists, the command fails with an
error message (that is, default mode is none).

> session start, node = none, filenane = nysession.tse

This command starts a new session file in a filename called nysessi on. t se.If mysessi on. t se
already exists, the command fails with an error message.

> session start, node = overwite, filename = nysession.tse

This command starts a new session. If mysessi on. t se already exists it is deleted, and replaced
with the new session. If the file does not already exist, it is created.

> session start, node = append, filenanme = nysession.tse

This command starts a new session. If mysessi on. t se already exists, the new session is appended
to the end of the existing file. If the file does not already exist, it is created.

> session start

This command starts a new session, using the mode and filename defined in the SESSI ON singleton.
If the SESSI ON singleton does not exist, an error message is raised indicating that a filename must
be specified.

> session start, nbpde = overwite

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 35

Command Actions

This command starts a new session with a filename of that specified in the SESSI ON singleton. If
the specified file already exists, it is deleted and a new file is created. If the SESSI ON singleton
does not exist, an error message is raised indicating that a filename must be specified.

> session start, node = append

This command starts a new session with a filename of that specified in the SESSI ON singleton. If
the specified file already exists, the new session is appended to the end of the existing file. If the
SESSI ON singleton does not exist, an error message is raised indicating that a filename must be
specified.

> session start, nbde = none

This command starts a new session with a filename of that specified in the SESSI ON singleton. If
the specified file already exists, the command is terminated with an error message. If the SESSI ON
singleton does not exist, an error message is raised indicating that a filename must be specified.

> session stop

This command terminates the current session in progress, and closes the currently open session
file.

3.2.7.Read Session Files

>readsession [fil ename=<fil enane>]

The >r eadsessi on command performs session file reading and executing.
<r eadsessi on supports the following options:
« filename = <fil enane>

Specifies the filename and path to the session file that should be read and executed. If no filename
is specified, the SESSI ON singleton object indicates the file to use. If no SESSI ON singleton exists,
an error is raised indicating that a filename must be specified.

3.2.7.1.readsession Command Examples

The following are example >r eadsessi on commands, and the expected results. If a SESSI ON
singleton exists, the values of the parameters listed after the >r eadsessi on command replace
the values stored in the SESSI ON singleton object. For this command, the f i | ename command
parameter value replaces the sessi on fi | ename parameter value in the SESSI ON singleton.

> readsessi on

This command reads the session file specified in the SESSI ON singleton, and executes its contents.
If the SESSI ON object does not exist, an error is raised indicating that a filename must be specified.

36

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Quantitative Calculations in the Command Editor Dialog Box

> readsession filename = nysession.tse
This command reads and executes the contents of the nysessi on. t se file.

3.2.8.Create Hardcopy
>print [<fil ename>]

The >pri nt command creates an image file showing the viewer contents. Settings for output format,
quality, and so on, are read from the HARDCOPY singleton object. For an example of the >pri nt
command, see Command Actions Example (p. 27).

The optional argument <f i | enanme> can be used to specify the name of the output file to override
that stored in HARDCOPY.

Note:

The HARDCOPY singleton object must exist before the >pri nt command is executed.

3.2.9. Export Geometry

The >t et i n command exports the current geometry to a Tetin (. t i n) file that can be read into
ICEM CFD products.

>t et i n requires the following argument:
« filename = <fil enane>

Specifies the filename and path to which the Tetin file is written.

3.2.9.1. tetin Command Example

The following is an example >t et i n command, and the expected results.

> tetin filename = nmytetin.tin

This command writes the current geometry to the nyt eti n. ti n file.

3.3. Quantitative Calculations in the Command Editor Dialog Box

When executing a calculation from the Command Editor dialog box, the result is displayed in the built-
in calculator.

The >cal cul at e command is used to perform function calculations in the Command Editor dialog

box. Typing >cal cul at e alone performs the calculation using the parameters stored in the CALCU
LATOR singleton object. Typing >cal cul ate <functi on nane> does not work if required arguments
are needed by the function.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 37

Command Actions

3.3.1.Function Calculation

>cal cul ate [<function nane>, <argunents>]

A number of useful quantitative functions have been defined within Ansys TurboGrid. These functions
are specified in the table below. You can follow the links in the Function Name column to see the
syntax used for each function when using them from the Command Editor dialog box. A detailed
description of the calculation performed by each function is not provided here. For details, see
Function in the TurboGrid User's Guide. When using quantitative functions as part of a CEL expression,
a different syntax is required. For details, see CEL Standard Functions (p. 26).

These functions may be accessed from the Command Editor dialog box using the >cal cul at e
command, or via function calls within Power Syntax. Reference documentation on the Power Syntax
functions is provided in Power Syntax (p. 43).

When a function is evaluated, a singleton CALCULATOR object is created that shows the parameters
and results for the most recent calculation. If the >cal cul at e command is supplied without
<function name> or <ar gunment s>, then the calculation is performed with the settings from
the CALCULATOR object (which may be modified like any other object in the Command Editor
dialog box). An error is raised if the CALCULATOR object does not exist.

When evaluated as part of a Power Syntax function, the results of the calculation can be stored in a
Power Syntax variable for further processing. See Examples of Power Syntax (p. 44) for examples of
using calculations within Power Syntax.

Function Operation Arguments
Name
<required>
[<optional>]
area (p. 39) Area projected to axis (no axis <Location>,
specification returns total area) [<AXxis>]
areaAve (p. 40) Area-weighted average <Expression>,
<Location>,
[<AXis>]
arealnt (p. 40) Area-weighted integral <Expression>,
<Location>,
[<AXxis>]
ave (p. 40) Arithmetic average <Expression>,
<Location>
count (p. 40) Number of calculation points <Location>
length (p. 40) Length of a curve <Location>
lengthAve (p. 40) Length-weighted average <Expression>,
<Location>
lengthint (p. 41) Length-weighted integration <Expression>,
<Location>
maxVal (p. 41) Maximum Value <Expression>,
<Location>

38

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Quantitative Calculations in the Command Editor Dialog Box

Function Operation Arguments
Name
<required>
[<optional>]
minVal (p. 41) Minimum Value <Expression>,
<Location>
probe (p. 41) Value at a point <Expression>,
<Location>
sum (p. 41) Sum over the calculation points <Expression>,
<Location>
volume (p. 41) Volume of a 3D location <Location>
volumeAve (p. 41) Volume-weighted average <Expression>,
<Location>
volumelnt (p. 41) Volume-weighted integral <Expression>,
<Location>
Note:

The following functions are not available in Ansys TurboGrid: force, forceNorm, massFlow,
massFlowAve, massFlowint and torque.

3.3.1.1.Expression Specification

Any variable or valid expression can be used as the <Expr essi on> argument. For example,
areaAve M ni mum Face Angl e, nyPl aneis allowed. For a list of variables and valid expres-
sions, see CEL Functions, Constants and System Variables (p. 26).

3.3.1.2. Axis Specification

Some functions take an axis specification as an argument. The general format for an axis specification
is:

<Xl Y| Zz>

3.3.1.3. Quantitative Function List

3.3.1.3.1.area

>cal cul ate area, <Location>, [<Axis>]

The specification of an axis is optional. If one is not specified, the value held in the CALCULATOR
object is used. To calculate the total area of the location, the axis specification should be left
blank (you should type a comma after the location specification). See area in the TurboGrid User's
Guide for a detailed function description.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 39

Command Actions

Example: >cal cul at e area, nypl ane calculates the area of the locator mypl ane projected
onto a plane normal to the axis specification in the CALCULATOR object.

Example: >cal cul at e area, nypl ane, calculates the area of the locator nypl ane. Note
that adding the comma after mypl ane removes the axis specification.

3.3.1.3.2.areaAve

>cal cul at e areaAve, <Expression>, <Location>, <Axis>

See areaAve in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.3.arealnt

>cal cul ate areal nt, <Expression>, <Location>, [<AXis>]

Axis is optional. If it is not specified the value held in the CALCULATOR object is used. To perform
the integration over the total face area, the axis specification should be blank (you should type

a comma after the location name). See arealnt in the TurboGrid User's Guide for a detailed function
description.

3.3.1.3.4.ave

>cal cul ate ave, <Expression>, <Location>

See ave in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.5.count

>cal cul ate count, <Location>

See count in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.6.length

>cal cul ate | ength, <Location>

Note:

When using this function in Power Syntax the leading character should be capitalized
to avoid confusion with the Perl internal command "length". See length in the TurboGrid
User's Guide for a function description.

3.3.1.3.7.lengthAve

>cal cul ate | engt hAve, <Expression>, <Location>

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
40 of ANSYS, Inc.and its subsidiaries and affiliates.

Quantitative Calculations in the Command Editor Dialog Box

See lengthAve in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.8.lengthint

>cal cul ate | engthlnt, <Expression> <Location>

See lengthint in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.9. maxVal

>cal cul ate maxVal, <Expression>, <Location>

See maxVal in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.10. minVal

>cal cul ate m nVal, <Expression> <Location>

See minVal in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.11. probe

>cal cul ate probe, <Expression> <Location>

See probe in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.12.sum

>cal cul ate sum <Expression>, <Location>

See sum in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.13.volume

>cal cul ate vol une, <Location>

See volume in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.14.volumeAve

>cal cul ate vol uneAve, <Expression>, <Location>

See volumeAve in the TurboGrid User's Guide for a detailed function description.

3.3.1.3.15.volumelnt

>cal cul ate vol unel nt, <Expression> <Location>

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 41

Command Actions

See volumelnt in the TurboGrid User's Guide for a detailed function description.

3.4.0ther Commands

3.4.1.Deleting Objects

>del et e <obj ect nanel i st >

The >del et e command can be used in the Command Editor dialog box to delete objects. The
command must be supplied with a list of object names separated by commas. An error message is
displayed if the list contains any invalid object names, but the deletion of valid objects in the list is
still processed.

3.4.2.Viewing a Chart

>chart <obj ect nane>

The >chart command is used to invoke the Chart Viewer and display the specified CHART object.
Chart objects and Chart Lines are created like other CCL objects.

3.4.3.Creating a Mesh

>nesh

The >mesh command is used in the Command Editor dialog box to create a mesh using the current
Topol ogy and Mesh Dat a objects.

42

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 4: Power Syntax

* Introduction (p. 43)

Examples of Power Syntax (p. 44)

Predefined Power Syntax Subroutines (p. 45)

4.1.Introduction

Programming constructs can be used within CCL for advanced usage. Rather than invent a new language,
CCL takes advantage of the full range of capabilities and resources from an existing programming lan-
guage, Perl. Perl statements can be embedded between lines of simple syntax, providing capabilities

such as loops, logic, and much, much more with any CCL input file.

A line of Power Syntax is identified in a CCL file by an exclamation mark (!) in the first column of a line.
In between Perl lines, simple syntax lines may refer to Perl variables and lists. Examples of CCL with
Power Syntax can be found in Examples of Power Syntax (p. 44).

A wide range of additional functionality is made available to expert users with the use of Power Syntax
including:

Loops

*+ Logic and control structures

+ Lists and arrays

Subroutines with argument handling (useful for defining commonly re-used plots and procedures)
Basic 1/0 and input processing
System functions

much, much more (Object programming, WorldWide Web access, simple embedded GUIs).

Any of the above may be included in a CCL input file or Ansys TurboGrid Session file.

Important:

You should be wary when entering certain expressions, since Power Syntax uses Perl math-
ematical operators. For example, in CEL, 2° is represented as 2/ 2, but in Perl, would be
written 2* * 2. If you are unsure about the validity of an operator, you should check a Perl
reference guide.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates. 43

Power Syntax

There are many good reference books on Perl. Two examples are "Learning Perl" (ISBN 1-56592-042-2)
and "Programming Perl" (ISBN 1-56592-149-6) from the O'Reilly series.

4.2.Examples of Power Syntax

The following are some examples in which the versatility of Power Syntax is demonstrated. They become
steadily more complex in the latter examples.

All arguments passed to subroutines should be enclosed in quotations, for example Pl ane 1 must be
passed as " Pl ane 1",and M ni num Face Angl e should be entered as "M ni mrum Face Angl e".
Any legal CFX Command Language characters that are illegal in Perl need to be enclosed in quotation
marks.

4.2.1.Example 1: Using a for Loop

This example demonstrates using Power Syntax to wrap a f or loop around some CCL Object definitions
to repetitively change the visibility on the outer boundaries.

Make the hub and shroud surfaces gradually transparent in
the specified nunber of steps.

I $nunst eps = 10;

Ifor ($i=0; $i < $nunsteps; $i++) {

I $trans = ($i+1)/$nunst eps;

GEOVETRY:

HUB:
Visibility =
Transparency = $trans

END

END
GEOVETRY:

SHROUD:
Visibility =
Transparency = $trans

END

END

'}

I

I

The first line of Power Syntax defines a scalar variable called nunst eps. Scalar variables (that is,
simple single-valued variables) begin with a "$" symbol in Perl. The next line defines a f or loop that
increments the variable i up to nunst eps. Next, we determine the fraction we are along in the loop
and assign it to the variable t r ans. The object definitions then use t r ans to set their transparency
and then repeat. Note how Perl variables can be directly embedded into the object definitions. The
final line of Power Syntax (! }) closes the f or loop.

4.2.2.Example 2: Creating a Simple Subroutine

This example defines a simple subroutine to make two TURBO SURFACE objects at specified locations.
The subroutine is used in the next example.

I sub makeTur boSur f aces {
USER DEFI NED:
TURBO SURFACE: Span Surface
Draw Faces = O f
Draw Lines = On
Vari abl e = Span Nornalized
Value = 0.25

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
44 of ANSYS, Inc.and its subsidiaries and affiliates.

Predefined Power Syntax Subroutines

Visibility = On
END

TURBO SURFACE: Theta Surface
Draw Faces = O f
Draw Lines = On
Variable = Theta
Val ue = 300 [degree]
Visibility = On

END

END

'}

You can execute this subroutine by typing ! makeTur boSur f aces() ; in the Command Editor
dialog box.

4.3.Predefined Power Syntax Subroutines

This section contains subroutines to provide additional Power Syntax functionality in Ansys TurboGrid.

You can view a list of these subroutines by entering ! showSubs(); in the Command Editor dialog
box. The list is printed to the console window. The list shows all currently loaded subroutines, so it in-
cludes any custom subroutines that you have processed in the Command Editor dialog box.

4.3.1. evaluate(Expression)
real,string eval uate("Expression")

A utility function that takes an expression and returns the evaluated expression. The returned value
is a list variable in which the first element is the numeric value of the expression, and the second is
the base unit. For example:

| @yexp = evaluate("10 [degree]/3.0");
Iprint "nmyexp=", $nyexp[0],"[", $nyexp[1],"]\n";
prints:

myexp=0. 0581776648759842] r ad]

4.3.2. getValue(Object Name, Parameter Name)

A utility function that takes a name or path of a CCL object and parameter name and returns the
value of the parameter. For example,

I $bl adecount = get Val ue("/ GEOVETRY: GEOVETRY/ MACHI NE DATA: MACHI NE DATA", "Bl adeset Count");

4.3.3.showPkgs()

voi d showPkgs()

A content subroutine that prints a list of available packages that may contain other variables or sub-

routines in Power Syntax.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

45

Power Syntax

4.3.4.showSubs()

voi d showSubs("String packageNane")

A content subroutine that prints a list of the subroutines available in the specified package. If no
package is specified, Ansys TurboGrid is used by default, which lists the routines specified here.

4.3.5.showVars()

voi d showvars("String packageNane")

A content subroutine that prints a list of the Power Syntax variables and their current value defined
in the specified package. If no package is specified, Ansys TurboGrid is used by default.

4.3.6.verboseOn()

Returns 1 or O depending if the Perl variable $ver bose is set to 1.

46

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 5: Line Interface Mode

* Introduction (p. 47)
+ Line Interface Mode (p. 48)

+ Batch Mode (p. 50)

5.1.Introduction

Some user interaction (for example with some advanced features) with Ansys TurboGrid is through the
CFX command line. This is denoted by the " TG>" command line prompt. At the command line prompt
you can issue CFX Command Language (CCL) actions, create CCL objects, and issue a few command-
line-specific commands. For further information on creating CCL objects, see the CCL details chapter in
the reference guide.

By default, any entry on the command line is assumed to be a CCL action, and is immediately processed
by Ansys TurboGrid. The table below provides a complete list of special commands that are accepted

by Ansys TurboGrid, but are not actually CCL actions. Refer to Command Actions (p. 27) for information
on CCL actions that can be used on the command line.

Action Arguments Behavior
(Abbreviation)
help (h) none Lists all valid command-line

and CCL actions.

getstate (s) <Object Name> Without an argument, lists all
currently defined objects.

With an argument, shows
details of the definition of the
named object.

enterccl (e) none Enters CCL object-definition
mode. Enables you to type CCL
object definitions. Ctrl+e
processes the object definition,
Ctrl+x aborts.

! <command> Executes a Power Syntax (Perl)
command

% <command> Executes a system command
(Unix Only)

Because a full mesh creation would require a large amount of typing, and because of the flexibility of
the CCL Power Syntax, most input will be via session files. A session file can be specified at start-up via

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

47

Line Interface Mode

the - sessi on <fil ename> option, or on the Ansys TurboGrid command line using the r eadsessi on
command. For further information on the r eadsessi on command, see Read Session Files (p. 36).

5.2.Line Interface Mode

All of the functionality of Ansys TurboGrid can be accessed when running in Line Interface mode. This
section contains information on how to perform typical user actions (loading state files, saving pictures,
and so on), defining geometry, creating graphical objects and performing quantitative calculations
when running Ansys TurboGrid in Line Interface mode.

In Line Interface mode you are typing the CCL commands that would otherwise be issued by the user
interface. A Viewer is provided in a separate window which shows the geometry and the objects that
you create on the command line.

To run in Line Interface mode (<CFXROOT> should be replaced with the filepath to your installation of
Ansys TurboGrid):

Windows: Execute the command <CFXROOT>\ bi n\ cf xtg -1i ne at the Command Prompt (omitting
the - | i ne option starts the user interface mode).

You may want to change the size of the Command Prompt window to view the output from commands
such as get st at e. This can be done by typing node con | i nes=X at the Command Prompt before
starting Ansys TurboGrid, where X is the number of lines to display in the window. You can choose a
large number of lines if you want to be able to see all the output from a session (a scroll bar is used in
the Command Prompt window).

Note:

Note that once inside Ansys TurboGrid, file paths should contain forward slashes.

UNIX: Execute the command <CFXROOT>/ bi n/ cf xt g -1 i ne at the command prompt (omitting
the - | i ne option starts the user interface mode).

In Ansys TurboGrid Line Interface mode, all commands are assumed to be actions, the > symbol required
in the Command Editor dialog box is not needed.

All of the functionality available from the Command Editor dialog box in the user interface is available
in Line Interface mode by typing ent er ccl or e at the command prompt. When in € mode you can
type any set of valid CCL commands. The commands are not processed until you leave e mode by
typing . e.You can cancel e mode without processing the commands by typing . c. For details, see
Command Editor Command in the TurboGrid User's Guide.

A list of Command Actions and their explanation are described in the Command Actions documentation.
For details, see Introduction (p. 27).

Note:

The action commands shown in the Command Actions documentation are preceded by the
> symbol. This symbol should be omitted when typing action commands at the command
prompt.)

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
48 of ANSYS, Inc. and its subsidiaries and affiliates.

Line Interface Mode

You can create objects by typing the CCL definition of the object when in € mode, or by reading the
object definition from a session or state file. See File Operations from the Command Editor Dialog
Box (p. 28) for details.

Line Interface mode differs from the Command Editor dialog box in that Line Interface action commands
are not preceded by the ">" symbol.

All commands that work for the Command Editor dialog box also work in line interface mode,
providing the correct syntax is used.

Some commands specific to line interface mode are listed below.

5.2.1.Lists of Commands
To show a list of valid commands, type hel p at the command prompt.

To see help for all CCL actions, refer to Command Actions (p. 27).

5.2.2.Viewer Hotkeys

The zoom, rotate, pan, and other mouse actions available for manipulating the viewer in user interface
mode perform identical functions in the viewer in line interface mode. In addition to this, hotkeys

can be used to manipulate other aspects of the viewer. For a full list of all the hotkeys available click

in the viewer to make it the active window and select the ? icon. To execute a hotkey command,
click once in the viewer (or on the object, as some functions are object-specific) and type the command.

5.2.3.Calculator

When evaluated on the command line, the result of a calculation is printed to standard output.

For a list of valid calculator functions and required parameters, type cal cul at e hel p at the com-
mand prompt. For details, see Quantitative Calculations in the Command Editor Dialog Box (p. 37).

5.2.4.getstate Command

The list of all currently defined objects can be obtained using the get st at e command. To get details
on a specific object, type get st at e <Obj ect Nane>.

5.2.5.Repeating CCL Commands

If you want to carry out the last CCL command again, type =.

5.2.6.Executing a Shell Command

If you want to carry out a shell command, type %directly before your command. For example, % s
lists all the files in your current directory.

5.2.7.Quitting

Ansys TurboGrid can be shut down by typing the qui t command at the command prompt.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates. 49

Line Interface Mode

5.2.8.Example

The following example provides a set of commands that you could type at the TG> command prompt.
The output that is written to the screen when executing these commands is not shown.

TG getstate / GEOVETRY: GEOVETRY/ HUB: HUB
TG e
GEOVETRY:
HUB:
Visibility = On
Transparency = 0.1
END
END
.e
TG getstate / GEOVETRY: GEOVETRY/ HUB: HUB
TG quit

5.3.Batch Mode

All of the functionality of Ansys TurboGrid can be accessed when running in batch mode. When running
in batch mode, a viewer window is not provided and you cannot type commands at a command prompt.

Commands are issued via an Ansys TurboGrid Session file (*. t se), the name of which is specified when
executing the command to start batch mode.

To run in batch mode, execute the following command at the command prompt:

Windows <CFXROOT>\ bi n\cfxtg -batch <file-
name>. t se

UNIX <CFXROOT>/ bi n/ cfxtg -batch <file-
name>. t se

The session file can be created using a text editor, or, more easily, by recording a session file while
running in Line Interface or user interface mode.

The last command of any session file used in batch mode should be >qui t . If this is not the case, you
will become locked in batch mode and have to terminate Ansys TurboGrid manually. If a session file is
recording when you quit from user interface or line interface mode, the >qui t command will be
automatically written to your session file before Ansys TurboGrid quits. Alternatively, you can use a text
editor to add this command to the end of a session file if you want Ansys TurboGrid to quit after playing
the session file.

5.3.1.Example: Generating a Similar Mesh from Different Curve Files

As mentioned above, the most common approach to generating session files for use in batch processing
is to record sessions carried out interactively. For example, you may record a session file of an entire
session in which you load profile points, generate topology, create a mesh and save it to a . gt mfile.

If you then edit the session file (using a text editor) replacing the hub, shroud, blade and mesh files

with other filenames, you can then repeat the same actions on different curve files by running the
edited session file.

You may also edit a session file to include a loop written with Power Syntax (Perl script). The session
file could load a state file before entering the loop so that only the CCL block structure that controls

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
50 of ANSYS, Inc.and its subsidiaries and affiliates.

Batch Mode

the parameters that vary must be in the loop. To obtain a particular CCL block structure, you can do
one of the following:

1. Write a state file and then use a text editor to select the appropriate CCL block.
2. Write a state file, saving only the CCL blocks that you need.

3. Begin recording a session file. Click Apply on the object editor for the object of interest. Stop
recording the session file. Open the session file in a text editor and extract the appropriate CCL
block.

The following is a simplified example of a loop that could be used in a parametric study. It loads 4
different blade files, bl adel. curve, bl ade2. cur ve...and so on, and writes 4 corresponding mesh
files, meshl. gt mnesh2. gt m.. while keeping all other settings the same.

for (1..4)

ny $bl adefile = "blade".$_.".curve";
ny $meshfile = "mesh". $_.".gtnl';
GEOVETRY: GEOVETRY
BLADE: Bl ade 1
Coordi nate Frame Type = Cartesian
Curve Representation = Bspline
I nput Angle Units = degree
I nput Fil enane = $bl adefile
I nput Length Units = m
Show Curve = O f
Show Surface = On
Surface Representation = Bspline
Visibility = On
END
END
> mesh
> savenesh fil ename=$nmeshfile, onefil e=0On, sol ver=cfx5

'}

The next example illustrates how a numerical parameter can be modified in a batch loop. It makes
use of a list of values.

for (20,27.5,35,42.5)
{

ny $hubAngle = $_." [degree]"”;
GEOVETRY: GEOVETRY
| NLET:
Hub Angl e = $hubAngl e
Override Automatic Angles = On
Shroud Angle = 0.0 [degree]
Visibility = Of
GEO PO NT: Low Hub Poi nt
Requested ART = -58.09, 166. 585, 54. 1607
Visibility = On
END
GEO PO NT: Low Shroud Poi nt
Visibility = On
END
END
END

"}

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates. 51

Line Interface Mode

A hash table may be used to map integers to numbers or text strings. The following example makes
use of a hash table to map from the loop index (an integer) to various real numbers:

I ny %ubAngl e=
P

1 = 20,

1 2 => 27.5,
1 3 => 35

I 4 => 42.5,
)8

1 for (1..4)
I

!

!

nmy $hubAngl eVal = $hubAngle{$_}." [degree]";
GEOVETRY: GEOVETRY
I NLET:
Hub Angl e = $hubAngl eVal
Override Automatic Angles = On
Shroud Angle = 0.0 [degree]
Visibility = Of
GEO PO NT: Low Hub Poi nt
Requested ART = -58.09, 166. 585, 54. 1607
Visibility = On
END
GEO PO NT: Low Shroud Poi nt
Visibility = On
END
END
END

'}

A hash table can also control parameters that require string values. An example of a string hash table
follows:

I ny %Wal ues =

1

! (1 = "On",
12 = "Of",

1 3 => "lastval"
l);

1

my $firstval = $val ues{1};

In this example, fi r st val will be set to On.To use this hash table in a loop, the quantity in {} after
$val ues could be $ which represents the loop index.

52

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

Chapter 6: Meshing Reference

Ansys TurboGrid employs the traditional concept of block-structure (multi-block) mesh generation. The
block-structure approach is simple and efficient, enabling the use of Transfinite Interpolation (TFI) for
surface and interior mesh generation.

Although it is possible to establish a correspondence between any physical region and any given logically

rectangular block, the grid inside such a block is likely to be unusable as the geometry becomes more
complex. Topology blocks therefore represent contiguous sub-regions of a physical domain. Within
each block, the mesh elements are logically rectangular but the blocks themselves fit together in an

unstructured manner. Each block has its own curvilinear coordinate system and is logically rectangular.

This allows the grid generation and numerical solution on the grid to be constructed to operate in a
logically rectangular computational region.

There are many subsets of TFl, such as Lagrangian and Hermitic: a useful reference for such subjects is
"The Handbook of Grid Generation" (J.F. Thompson et al., 1999, CRC Press). Ansys TurboGrid employs
an algebraic, semi-isogeometric procedure for surface-mesh generation.

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

53

54

Release 2021 R2 - © ANSYS, Inc.Allrights reserved.- Contains proprietary and confidential information
of ANSYS, Inc.and its subsidiaries and affiliates.

	1st page
	Ansys_TurboGrid_Reference_Guide
	Ansys TurboGrid Reference Guide
	Table of Contents
	Chapter 1: Ansys TurboGrid Launcher
	1.1. The Ansys TurboGrid Launcher Interface
	1.1.1. Menu Bar
	1.1.1.1. File Menu
	1.1.1.1.1. Save As
	1.1.1.1.2. Quit

	1.1.1.2. Edit Menu
	1.1.1.2.1. Clear
	1.1.1.2.2. Find
	1.1.1.2.3. Options
	1.1.1.2.3.1. Graphical User Interface Style
	1.1.1.2.3.2. Font and Formatted Font

	1.1.1.3. CFX Menu
	1.1.1.3.1. TurboGrid 2021 R2
	1.1.1.3.2. Other Ansys CFX Applications

	1.1.1.4. Show Menu
	1.1.1.4.1. Installation
	1.1.1.4.2. All
	1.1.1.4.3. System
	1.1.1.4.4. Variables

	1.1.1.5. Tools Menu
	1.1.1.5.1. Ansys Client Licensing Utility
	1.1.1.5.2. Command Line
	1.1.1.5.3. Edit File

	1.1.1.6. User Menu
	1.1.1.7. Help Menu

	1.1.2. Toolbar
	1.1.3. Working Directory Selector
	1.1.4. Output Window

	1.2. Customizing the Ansys TurboGrid Launcher
	1.2.1. CCL Structure
	1.2.1.1. GROUP
	1.2.1.2. APPLICATION
	1.2.1.2.1. Including Environment Variables

	1.2.1.3. DIVIDER

	1.2.2. Example: Adding the Windows Calculator

	Chapter 2: CFX Command Language
	2.1. Introduction
	2.2. CCL Syntax
	2.2.1. Basic Terminology
	2.2.1.1. The Data Hierarchy

	2.2.2. Simple Syntax Details
	2.2.2.1. Case Sensitivity
	2.2.2.2. CCL Names Definition
	2.2.2.3. Indentation
	2.2.2.4. End of Line Comment Character
	2.2.2.5. Continuation Character
	2.2.2.6. Named Objects
	2.2.2.7. Singleton Objects
	2.2.2.8. Parameters
	2.2.2.9. Lists
	2.2.2.10. Parameter values
	2.2.2.10.1. String
	2.2.2.10.2. String List
	2.2.2.10.3. Integer
	2.2.2.10.4. Integer List
	2.2.2.10.5. Real
	2.2.2.10.6. Real List
	2.2.2.10.7. Logical
	2.2.2.10.8. Logical List

	2.2.2.11. Escape Character

	2.3. Object Creation and Deletion
	2.4. Ansys CFX Expression Language
	2.4.1. CEL Functions, Constants and System Variables
	2.4.1.1. CEL Standard Functions
	2.4.1.2. CEL Constants

	Chapter 3: Command Actions
	3.1. Introduction
	3.1.1. Command Actions Example

	3.2. File Operations from the Command Editor Dialog Box
	3.2.1. Save State Files
	3.2.1.1. savestate Command Examples

	3.2.2. Read State Files
	3.2.2.1. readstate Command Examples

	3.2.3. Save Topology Files
	3.2.3.1. savetopology Command Example

	3.2.4. Save Mesh Files
	3.2.4.1. savemesh Command Examples

	3.2.5. Save Blade Files
	3.2.5.1. saveblade Command Example

	3.2.6. Create Session Files
	3.2.6.1. session Command Examples

	3.2.7. Read Session Files
	3.2.7.1. readsession Command Examples

	3.2.8. Create Hardcopy
	3.2.9. Export Geometry
	3.2.9.1. tetin Command Example

	3.3. Quantitative Calculations in the Command Editor Dialog Box
	3.3.1. Function Calculation
	3.3.1.1. Expression Specification
	3.3.1.2. Axis Specification
	3.3.1.3. Quantitative Function List
	3.3.1.3.1. area
	3.3.1.3.2. areaAve
	3.3.1.3.3. areaInt
	3.3.1.3.4. ave
	3.3.1.3.5. count
	3.3.1.3.6. length
	3.3.1.3.7. lengthAve
	3.3.1.3.8. lengthInt
	3.3.1.3.9. maxVal
	3.3.1.3.10. minVal
	3.3.1.3.11. probe
	3.3.1.3.12. sum
	3.3.1.3.13. volume
	3.3.1.3.14. volumeAve
	3.3.1.3.15. volumeInt

	3.4. Other Commands
	3.4.1. Deleting Objects
	3.4.2. Viewing a Chart
	3.4.3. Creating a Mesh

	Chapter 4: Power Syntax
	4.1. Introduction
	4.2. Examples of Power Syntax
	4.2.1. Example 1: Using a for Loop
	4.2.2. Example 2: Creating a Simple Subroutine

	4.3. Predefined Power Syntax Subroutines
	4.3.1. evaluate(Expression)
	4.3.2. getValue(Object Name, Parameter Name)
	4.3.3. showPkgs()
	4.3.4. showSubs()
	4.3.5. showVars()
	4.3.6. verboseOn()

	Chapter 5: Line Interface Mode
	5.1. Introduction
	5.2. Line Interface Mode
	5.2.1. Lists of Commands
	5.2.2. Viewer Hotkeys
	5.2.3. Calculator
	5.2.4. getstate Command
	5.2.5. Repeating CCL Commands
	5.2.6. Executing a Shell Command
	5.2.7. Quitting
	5.2.8. Example

	5.3. Batch Mode
	5.3.1. Example: Generating a Similar Mesh from Different Curve Files

	Chapter 6: Meshing Reference

