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Chapter 1

Fundamentals of CFD

1. What is CFD? Why do we study CFD?

Let’s begin our first class with a couple of interesting scenarios.

Scenario 1: See Fig. 1. Consider you’re a chief scientist in a big aerospace
research lab. You’re given a mission to develop a new aerospace plane that can
reach at hypersonic speed (> Mach 5) within minutes after taking off. Its pow-
erful supersonic combustion ramjets continue to propel the aircraft even faster
to reach to a velocity near 26,000 ft/s (or 7.92 km/s, or Mach 25.4 in air at high
altitudes, or a speed of NY to LA in 10 min), which is simply a low Earth orbital
speed. This is the concept of transatmospheric vehicle the subject of study in
several countries during the 1980s and 1990s. When designing such extreme hy-
personic vehicles, it is very important to understand full three-dimensional flow
filed over the vehicle with great accuracy and reliability. Unfortunately, ground
test facilities – wind tunnels – do not exist in all the flight regimes around such
hypersonic flight. We neither have no wind tunnels that can simultaneously
simulate the higher Mach numbers and high flow field temperatures to be en-
countered by transatmospheric vehicles.

Scenario 2: See Fig. 2. Consider you’re a theoretical astrophysicist who
tries to understand core collapse supernova explosions. The theory tells us that
very massive starts can undergo core collapse when the core fail to sustain against
its own gravity due to unstable behavior of nuclear fusion. We simply cannot
find any ground facilities that allow us to conduct any laboratory experiments
in such highly extreme energetic astrophysical conditions. It is also true that
in many astrophysical circumstances, both temporal and spatial scales are too
huge to be operated in laboratory environments.

Scenario 3: See Fig. 3. Consider you a golf ball manufacturer. Your goal
is to understand flow behaviors over a flying golf ball in order to make a better
golf ball design (and become a millionaire!) Although you’ve already collected
a wide range of the laboratory experimental data on a set of golf ball shapes
(i.e., surface dimple design), you realize that it is very hard to analyze the data
and understand them because the data are all nonlinearly coupled and can’t
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Figure 1. DARPA’s Falcon HTV-2 unmanned aircraft can max out at a
speed of about 16,700 miles per hour – Mach 22, NY to LA in 12 minutes.

be isolated easily. To keep your study in a better organized way, you wish to
perform a set of parameter studies by controlling flow properties one by one so
that you can also make reliable flow prediction for a new golf ball design.

As briefly hinted above, in practice there are various levels of difficulties en-
countered in real experimental setups. When performing the above mentioned
research work, CFD therefore can be the major player that leads you to success
because you obtain mathematical controls in numerical simulations. Let us take
an example how numerical experiment via CFD can elucidate physical aspects
of a real flow field. Consider the subsonic compressible flow over an airfoil. We
are interested in answering the differences between laminar and turbulent flow
over the airfoil for Re = 105. For the computer program (assuming the computer
algorithm is already well established, validated and verified!), this is a straight-
forward matter – it is just a problem of making one run with the turbulence
model switched off (for the laminar setup), another run with the turbulence
model switched on (for the turbulent flow), followed by a comparison study of
the two simulation results. In this way one can mimic Mother Nature with sim-
ple knobs in the computer program – something you cannot achieve quite readily
(if at all) in the wind tunnel. Without doubt, however, in order to achieve such
success using CFD, you’d better to know what you do exactly when it comes to
numerical modeling – the main goal of this course.

We are now ready to define what CFD is. CFD is a scientific tool, similar
to experimental tools, used to gain greater physical insights into problems of
interest. It is a study of the numerical solving of PDEs on a discretized sys-
tem that, given the available computer resources, best approximates the real
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Figure 2. FLASH simulations of neutrino-driven core-collapse supernova
explosions. Sean Couch (ApJ, 775, 35 (2013)).

geometry and fluid flow phenomena of interests. CFD constitutes a new “third
approach” in studying and developing the whole discipline of fluid dynamics. A
brief history on fluid dynamics says that the foundations for experimental fluid
dynamics began in 17th century in England and France. In the 18th and 19th
centuries in Europe, there was the gradual development of theoretical fluid dy-
namics. These two branches – experiment and theory – of fluid dynamics have
been the mainstreams throughout most of the twentieth century. However, with
the advent of the high speed computer with the development of solid numerical
studies, solving physical models using computer simulations has revolutionized
the way we study and practice fluid dynamics today – the approach of CFD.
As sketched in Fig. 4, CFD plays a truly important role in modern physics as
an equal partner with theory and experiment, in that it helps bringing deeper
physical insights in theory as well as help better desiging experimental setups.

The real-world applications of CFD are to those problems that do not have
known analytical solutions; rather, CFD is a scientific vehicle for solving flow
problems that cannot be solved in any other way. In this reason – the fact
that we use CFD to tackle to solve those unknown systems – we are strongly
encouraged to learn thorough aspects in all three essential areas of study: (i)
numerical theories, (ii) fluid dynamics, and (iii) computer programing skills.
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Figure 3. Contours of azimuthal velocity over a golf ball: (a) Re = 2.5×104;
(b) Re = 1.1 × 105. C. E. Smith et al. (Int. J. Heat and Fluid Flow, 31,
262-273 (2010)).

2. About Homework Problems, Mid-term Exam, and Final-Term
Project

Something needs to be said about what is expected in homework problems and
one final computer project in this course. Most importantly, as early as possible,
you need to choose your preferred programming languages and visualization tools
in order to demonstrate your academic progress throughout the coursework.

2.1. Scientific languages

Fortran, C, C++, etc. (compiled languages); python, java, ruby, idl, matlab,
GNU Octave, etc. (interpreted languages)

2.2. Visualization tools

gnuplot, idl, matlab, python, matplotlib (matplotlib.org), yt (yt-project.org),
VisIt (https://wci.llnl.gov/simulation/computer-codes/visit/), techplot (www.techplot.com),
etc.

For beginners, matlab can be a good tool to start with for both programing
(relatively slower in performance but easier in programing) and visualization
(convenient!) purposes. For skillful students, you’re very welcome to use a
compiled language (faster in performance and a better educational investment
in scientific programing). If you haven’t done any scientific computing yet, please
consult with me by the end of the first week, Jan 9, 2015.
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Figure 4. Three healthy cyclic relationship in fluid dynamics.

2.3. Homework Submission

There are total of 4 homework problem sets on both mathematical theories and
computer programming in every two weeks. They take 30% toward your total
grade. The purpose of the assignments is to provide you with opportunities in
exploring mathematical concepts and using them to conduct numerical calcula-
tions. In this course you will learn extensively how to discretize mathematical
equations and visualize numerical solutions to them. There is a policy on any
late homework submission that you are going to receive a maximum of 80% if
late by less than a day; 50% if late by more than a day. Students are strongly
encouraged to submit their homework electronically in pdf (no word documents).

2.4. Mid-term – Feb 18, 2015

One in-class exam will be counted 30% toward your total grade.

2.5. Final-term computer programming project – Mar 20, 2015

A final project will be written up in a professional style using either latex or any
word documents and submitted as a pdf file. It is expected that the quality of
this project, of the students choosing in consultation with the instructor), will
go past the material required for the other computer assignments. At the end
of the quarter, each student will present his/her results to the class (15 min oral
presentation), and the rest of your classmates will participate in evaluating your
presentation. The project will take 40% of your total grade.
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3. Course materials

3.1. Main resources:

(1) Class notes and handouts,
(2) Numerical methods for conservation laws – R. J. LeVeque (Birkhäuser)

3.2. Other textbook materials:

(3) Finite volume methods for hyperbolic problems – R. J. LeVeque (Cam-
bridge),
(4) Riemann solvers and numerical methods for fluid dynamics – E. F. Toro
(Springer),
(5) Computational fluid dynamics – J. D. Anderson (McGraw-Hill),
(6) Computational gasdynamics – C. B. Laney (Cambridge), and
(7) Fundamentals of computational fluid dynamics – H. Lomax, T. H. Pulliman,
D. W. Zingg (Springer).

3.3. Non-textbook reading materials:

(8) journal papers on computational methods are provided when needed.
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4. The Governing Equations

In this chapter, we discuss fundamental principles in fluid dynamics and derive
their governing equations, their physical meaning, and their mathematical forms
particularly appropriate in CFD.

4.1. The fundamental equations of fluid dynamics

In modeling fluid motion, there are always following philosophy we need to con-
sider. First is to choose the appropriate fundamental physical principles from
the law of physics that are:

(a) Mass is conserved,
(b) F = ma (Newton’s second law), and
(c) energy is conserved.

We apply these physical principles to an appropriate flow model of our interest,
and extract the needed mathematical equations which embody such physical
principles. As we are interested in physical behaviors of a continuum fluid (or
gas dynamics) in this course (rather than those of solid body, i.e., fluid mechan-
ics rather than solid mechanics), we can construct one of the four models in
modeling fluid motion:

(F1) finite control volume approach fixed in space,
(F2) finite control volume approach moving with the fluid,
(F3) infinitesimal fluid element fixed in space, and finally,
(F4) infinitesimal fluid element fixed moving along a streamline.

The first two cases based on finite control volume (FVC) are illustrated in Fig.
5, whereas the last two cases of infinitesimal fluid element (IFE) are shown in
Fig. 6. Let’s now consider each of the four different approaches and derive the
related mathematical relations.

Figure 5. Finite control volume approach. Left: (F1) Finite control volume
V fixed in space with the fluid moving through it. Right: (F2) Finite control
volume moving V with the fluid with the same number of fluid particles kept
in the same control volume V.

4.1.1. General Remarks on FCV (F1 & F2):
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Figure 6. Infinitesimal fluid element approach. Left: (F3) Infinitesimal
fluid element dV fixed in space with the fluid moving through it. Right:
(F4) Infinitesimal fluid element dV moving along a streamline with the local
velocity V equal to the local flow velocity at each point.

• We conceptually define ‘FCV’ a reasonably large closed region of the flow
with a finite volume V and call its surface a ‘control surface’ S.

• FCV can be put in two different cases: (1) fixed in space with the fluid
moving through it – this approach gives rise to the conservative form
of the governing equations in integral form; (2) moving with the fluid
such that the same fluid particles are always inside it – this results in the
nonconservative form of the governing equations integral form.

• With the FCV approach, we limit our attention to just the fluid in the
finite region of the volume itself (that is, we apply the law of physics to
V ) instead of looking at the whole flow field at once.

4.1.2. General Remarks on IFE (F3 & F4):

• In this approach we consider an infinitesimally small fluid element in the
flow with a differential volume dV.

• The fluid element is infinitesimal in the same sense as differential calcu-
lus and is large enough to contain a huge number of molecules (i.e., a
continuous medium).

• As in FCV, two approaches are available wherein (3) IFE is fixed in space
with the fluid moving through it – conservative form in differential form of
the governing equations; and (4) moving along a streamline with a velocity
vector V equal to the flow velocity at each point – nonconservative form
of the differential form of the governing equations.

Note: We can possibly think of another approach that is based on the funda-
mental physics applied directly to the atoms and molecules – this is called the
kinetic theory that solves the Boltzmann equations for individual particle using
their distribution functions fα. Notice that this approach has a microscopic view
point in fluid motions, whereas FCV and IFE have a macroscopic view point.

4.2. Two important mathematical relations: D/Dt and ∇ ·V
Before we start deriving the above mentioned mathematical relations, let’s first
take a moment to refresh our physical insights into two important mathematical
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relations: (i) the substantial derivative D/Dt, and (ii) the divergence of velocity
fields, ∇ ·V.

(i) The substantial derivative D/Dt: Consider adopting the flow model
described in F4, which is shown again in Fig. 7 in two different incidents in space
and time in Cartesian space. Let’s take a velocity vector V = ui + vj + wk,
where each component is a function of both space and time,

u = u(x, y, z, t), (1.1)

v = v(x, y, z, t), (1.2)

w = w(x, y, z, t). (1.3)

We denote the scalar density field by

ρ = ρ(x, y, z, t). (1.4)

The density of the same fluid at the two different locations of space and time

Figure 7. Illustration for the substantial derivative for a fluid element mov-
ing in the flow

can be written as ρ1 = ρ(x1, y1, z1, t1) and ρ2 = ρ(x2, y2, z2, t2), where we can
further expand the density function about point 1 as follows:

ρ2 = ρ1+
(∂ρ
∂x

)
1
(x2−x1)+

(∂ρ
∂y

)
1
(y2−y1)+

(∂ρ
∂z

)
1
(z2−z1)+

(∂ρ
∂t

)
1
(t2−t1)+H.O.T

(1.5)
Dividing by t2 − t1 and ignoring high-order terms (H.O.T), we get

ρ2 − ρ1
t2 − t1

=
(∂ρ
∂x

)
1

x2 − x1
t2 − t1

+
(∂ρ
∂y

)
1

y2 − y1
t2 − t1

+
(∂ρ
∂z

)
1

z2 − z1
t2 − t1

+
(∂ρ
∂t

)
1

(1.6)
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Take a look at the LHS of Eq. 1.6 and we notice that this is physically the
‘average’ time rate of change in density of the fluid element as it moves from
point 1 to point 2. in the limit of t2 → t1, we get

lim
t2→t1

ρ2 − ρ1
t2 − t1

≡ Dρ

Dt
(1.7)

By definition, the symbol is called the substantial derivative D/Dt and it has
its physical meaning that measures the time rate of change of a given quantity
(density in our current example) of the given fluid element as it moves from one
location to another in both space and time.

Note: Notice that there is a clear difference between D/Dt and ∂/∂t in that
the latter is called the local derivative which represents the time rate of change
at a ‘fixed’ point – our eyes are locked on the stationary point 1; whereas for the
first, our eyes are locked on the fluid element as it moves watching its density
change as it passes through point 1.

Now, taking the limit of Eq. 1.6 as t2 → t1, we can further cast the relation
into

Dρ

Dt
= u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+
∂ρ

∂t
(1.8)

Finally, we can obtain an expression for the substantial derivative in Carte-
sian coordinate system:

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
=

∂

∂t
+ V · ∇, (1.9)

where we have introduced

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (1.10)

Quick summary:

• D/Dt is called the substantial derivative (or, also called material deriva-
tive),

• ∂/∂t is called the local derivative, and

• V · ∇ is called the convective derivative.

Note: Recall that the substantial derivative is nothing but a total derivative
with respect to time, d/dt. In other words, from differential calculus, we easily
see that

dρ =
∂ρ

∂x
dx+

∂ρ

∂y
dy +

∂ρ

∂z
dz +

∂ρ

∂t
dt, (1.11)

which yields
dρ

dt
= u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+
∂ρ

∂t
(1.12)
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Example: You are entering an ice cave with a friend of yours. You will experi-
ence a temperature decrease as you walk deeper in to the cave – this is analogous
to the convective derivative. As you keep walking in to the cave, your friend
throws a snowball at you and you feel an additional instantaneous temperature
drop when the snowball hits you – this effect is analogous to the local derivative.
Notice that the substantial derivative is the sum of the two effects.

(ii) The divergence of the velocity fields ∇ · V: Consider a finite
control volume (FCV) moving from one place to another depicted as in Fig. 8.
In this example, the FCV is consist of the same fluid particles when moving,
therefore keeping is mass fixed in time. However, its volume V and its control
surface S can vary with time as it moves to a different location of the flow where
different density occupies. That is, the control volume keeps changing its volume
and shape depending on the characteristic of the flow.

Figure 8. Moving control volume for the physical interpretation the diver-
gence of the velocity fields

Let us now focus on an infinitesimal element of surface dS moving at the
local velocity V along the normal direction n which is perpendicular to dS. The
change in the volume ∆V of the control volume due to the movement of dS over
∆t is available by inspecting the volume of the long, thin cylinder with the base
area of dS and the height V∆t · n. That is,

∆V = V∆t · ndS = V∆t · dS, (1.13)

where ndS = dS. In the limit of dS → 0, the total change in volume of the
whole control volume is ∫ ∫

S
V∆t · dS. (1.14)

After dividing Eq. 1.14 by ∆t and subsequently apply the divergence theorem,
we obtain its physical meaning of ‘the time rate of change of the control volume’,
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denoted by DV
Dt (note here that we used the substantial derivative notation of V

as we wish to define the time rate of change of the control volume as the volume
moves along with the flow):

DV
Dt

=
1

∆t

∫ ∫

S
V∆t · dS =

∫ ∫

S
V · dS =

∫ ∫ ∫

V
∇ ·VdV. (1.15)

By keeping continuously shrink V to δV in such a way that δV is so small
enough to treat ∇ ·V as constant in δV. Then in the limit of δV → 0, we can
rewrite Eq. 1.15 as

D(δV)

Dt
=

∫ ∫ ∫

δV
∇ ·VdV = ∇ ·VδV, (1.16)

or

∇ ·V =
1

δV
D(δV)

Dt
(1.17)

Quick summary:

• ∇ ·V physically means the time rate of change of the volume of a moving
fluid element per unit volume.

4.3. The Continuity Equation

We are now ready to apply the philosophy discussed in Sec. 4.1. to all four of
the flow models illustrated in Figs. 5 and 6. Let’s begin with the first principle:

(a) Mass is conserved.

We are going to derive the continuity equation in four different ways and see
they are all related mathematically.

(F1) FCV fixed in space:
Let us examine the principle of the mass conservation by considering a small
control volume V surrounded by its control surface S as depicted in the left
panel of Fig. 5. Then the mass conservation law can be stated as:

The net mass flow ‘out’ of V through surface S = The time
rate of ‘decrease’ of mass inside V

In order to obtain a mathematical expression for LHS, we write the mass
flow of a moving fluid with fluid velocity V across any fixed surface. The ele-
mental mass flow across the area dS normal to n becomes

ρV · ndS = ρV · dS (1.18)

Recall that by convention, the direction of the flow is ‘out’ of V because dS
points in a direction ‘out’ of V, hence the mass inside V ‘decreases’ in the above
statement. By taking the surface integral of Eq. 1.18, we obtain the net mass
flow out of the entire control volume V – the expression for LHS:

∫ ∫

S
ρV · dS (1.19)
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The expression for RHS is the time rate of ‘decrease’ of the total mass∫ ∫ ∫
V ρdV inside V, that is,

− ∂

∂t

∫ ∫ ∫

V
ρdV (1.20)

Equating the two, we finally get a mathematical relation for the mass conserva-
tion:

∂

∂t

∫ ∫ ∫

V
ρdV +

∫ ∫

S
ρV · dS = 0 (1.21)

Note: We emphasize that Eq. 1.21 is an integral form of the continuity equa-
tion. The ‘finite’ aspect of the control volume is why the equation is obtained
directly in integral form. The fact that the control volume was ‘fixed in space’
resulted in the specific integral form given by Eq. 1.21, which is called the con-
servation form.

(F2) FCV moving with the fluid: As seen earlier, we can write another
mathematical expression for the mass conservation law using the substantial
derivative which perfectly describes behavior of the time rate of change of any
property of a fluid element moving with the flow. That is to say, the mass
conservation law is simply put into a form

D

Dt

∫ ∫ ∫

V
ρdV = 0 (1.22)

Note: We remark that Eq. 1.22 is also an integral form of the continuity
equation which is different from the previous result – this is now called the non-
conservation form. Comparing with the previous conservation form, we can see
that the nonconservative form is a result of considering the control volume mov-
ing with the fluid.

(F3) IFE fixed in space: For convenience we adopt an infinitesimal
fluid element fixed in space in a Cartesian coordinate system shown in Fig. 9.
What we want to calculate is the net mass flow through all surrounding six faces
with the elemental areas of dxdy, dydz and dxdz. As illustrated in Fig. 9, we
consider each individual net flow in each coordinate direction. They are
(a) the net outflow in x-direction:

(ρu+
∂ρu

∂x
dx)dydz − (ρu)dydz =

∂ρu

∂x
dxdydz, (1.23)

(b) the net outflow in y-direction:

(ρv +
∂ρv

∂y
dy)dxdz − (ρv)dydz =

∂ρv

∂y
dxdydz, (1.24)

(c) the net outflow in z-direction:

(ρw +
∂ρw

∂z
dz)dxdy − (ρw)dxdy =

∂ρw

∂z
dxdydz. (1.25)



15

Figure 9. Model of the infinitesimal fluid element fixed in space and mass
fluxes through various faces of the element

Hence, the net mass flow out of the element in all directions is given by summing
all of the above relations:

(∂ρu
∂x

+
∂ρv

∂y
+
∂ρw

∂z

)
dxdydz, (1.26)

which should be equal to the time rate of decrease of the total mass ρdxdydz in
the infinitesimal element of volume dxdydz:

−∂ρ
∂t
dxdydz (1.27)

Equating the two we get yet another form describing the mass conservation

∂ρ

∂t
+
(∂ρu
∂x

+
∂ρv

∂y
+
∂ρw

∂z

)
=
∂ρ

∂t
+∇ · (ρV) = 0 (1.28)

Note: We call Eq. 1.28 the differential form of the continuity equation in
conservation form. The ‘infinitesimal’ aspect of the small element lead to the
differential form of the equation, and, as before, the fact that the fluid element
was ‘fixed in space’ resulted in the conservation form.

(F4) IFE moving with the fluid: We remind ourselves that although
the mass of an IFE is conserved when it moves with the fluid, its elemental
volume δV varies. Since the mass in the IFE is invariant, invoking the physical
meaning of the substantial derivative and using the chain rule, we have

0 =
DρδV
Dt

= δVDρ
Dt

+ ρ
DδV
Dt

(1.29)
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Combining the definition of the divergence of the velocity fields in Eq. 1.17,
this can be rewritten as

Dρ

Dt
+ ρ∇ ·V = 0 (1.30)

Note: We call Eq. 1.30 the differential form of the continuity equation in non-
conservation form. The ‘infinitesimal’ aspect of the small element lead to the
differential form of the equation, while the fact that the fluid element was ‘mov-
ing with the fluid’ resulted in the nonconservation form as in (F2).

Homework 1. Often times, the condition for incompressible flows is given by
∇ ·V = 0. Why?

Homework 2. Derive the integral form of the momentum equation in con-
servation form

∂

∂t

∫ ∫ ∫

V
ρVdV +

∫ ∫

S
(ρV · dS)V =

∫ ∫ ∫

V
ρfdV −

∫ ∫

S
pdS (1.31)

using the Newton’s second law applied to a fluid flow. Ignore any viscous effect
(Hint: F = d

dt(mV)).

Homework 3. Derive the integral form of the energy equation in conserva-
tion form using the energy conservation law for adiabatic inviscid flows:

∂

∂t

∫ ∫ ∫

V
ρ(e+

V 2

2
)dV+

∫ ∫

S
ρ(e+

V 2

2
)V·dS =

∫ ∫ ∫

V
ρf ·VdV−

∫ ∫

S
pV·dS

(1.32)

Homework 4. Show that all four approaches discussed in (F1)-(F4) for the
continuity equation are in fact all the same. That is, one of them can be ob-
tained from any of the others. (Hint: You can show that there are equivalent
relationships in circle: (F1) ⇒ (F2) ⇒ (F4) ⇒ (F3) ⇒ (F1) )



Chapter 2

Reviews on PDEs

1. Properties of PDEs

In this chapter, we study the key defining properties of partial differential equa-
tions (PDEs). First of all, there are more than one ‘independent’ variables
t, x, y, z, .... Associated to these is so called a ‘dependent’ variable u (of course
there could be more than one dependent variables) which is a function of those
independent variables,

u = u(x, y, z, t, ...) (2.1)

We now provide a bunch of basic definitions and examples on PDEs.

Definition: A PDE is a relation between the independent variables and the
dependent variable u via the partial derivatives of u.

Definition: The order of PDE is the highest derivative that appears.

Example: F (x, y, u, ux, uy) = 0 is the most general form of first-order PDE in
two independent variables x and y.

Example: F (t, x, y, u, ut, uxx, uxy, uyy) = 0 is the most general form of second-
order PDE in three independent variables t, x and y.

Example: ut − uxx = 0 is a second-order PDE in two independent variables t
and x.

Example: uxxxx+(uy)
3 = 0 is a fourth-order PDE in two independent variables

x and y.

Definition: L is called a linear operator if L(u+v) = Lu+Lv for any functions
u and v.

Definition: A PDE Lu = 0 is called a linear PDE if L is a linear derivative
operator.
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Definition: A PDE Lu = g is called an inhomogeneous linear PDE if L is a
linear derivative operator and if g 6= 0 is a given function of the independent
variables. If g = 0, it is called a homogeneous linear PDE.

Example: The following PDEs are homogeneous linear:
ux + uy = 0 (transport); ux + yuy = 0 (transport); uxx + uyy = 0 (Laplace’s
equation)

Example: The following PDEs are homogeneous nonlinear:
ux + uuy = 0 (shock wave); utt + uxx + u3 = 0 (wave with interaction);
ut + uux + uxxx = 0 (dispersive wave);

Example: The following PDEs are inhomogeneous linear:
cos(xy2)ux − y2uy = tan(x2 + y2)

2. Well-posedness of PDEs

When solving PDEs, one often encounters a problem that has more than one
solution (non-uniqueness) if few auxiliary conditions are imposed. Then the
problem is called underdetermined. On the other hand, if too many conditions
are given, there may be no solution at all (non-existence) and in this case, the
problem is overdetermined.

The well-posedness property of PDEs is therefore required in order for us to
enable to solve the given PDE system successfully. Well-posed PDEs of proper
initial and boundary conditions follows the following fundamental properties:

1. Existence: There exists at least one solution u(x, t) satisfying all these
conditions,

2. Uniqueness: There is at most one solution,

3. Stability: The unique solution u(x, t) depends in a stable manner on the
data of the problem. This means that if the data are changed a little, the
corresponding solution changes only a little as well.

3. Classifications of Second-order PDEs

PDEs arise in a number of physical phenomena to describe their natures. Some
of the most popular types of such problems include fluid flows, heat transfer,
solid mechanics and biological processes. These types of equations often fall
into one of three types, (i) hyperbolic PDEs that are associated with advection,
(ii) parabolic PDEs that are most commonly associated with diffusion, and (iii)
elliptic PDEs that most commonly describe steady states of either parabolic or
hyperbolic problems.

In reality, not many problems fall simply into one of these three types,
rather most of them involve combined types, e.g., advection-diffusion problems.
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Mathematically, however, we can rather easily determine the type of a general
second-order PDEs, which we are going to briefly discuss here.

In general, let’s consider the PDE of form with nonzero constants a11, a12,
and a22:

a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u = 0, (2.2)

which is a second-order linear equation in two independent variables x and y
with six constant coefficients.

Theorem: By a linear transformation of the independent variables, the equa-
tion can be reduced to one of three forms:

1. Elliptic PDE: if a212 < a11a22, it is reducible to

uxx + uyy + L.O.T = 0 (2.3)

where L.O.T denotes all the lower order terms (first or zeroth order terms).

2. Hyperbolic PDE: if a212 > a11a22, it is reducible to

uxx − uyy + L.O.T = 0 (2.4)

3. Parabolic PDE: if a212 = a11a22 (the condition for parabolic is in between
those of elliptic and hyperbolic), it is reducible to

uxx + L.O.T = 0 (2.5)

Remark: Notice the similarity between the above classification and the one in
analytic geometry. We know from analytic geometry that, given (again assuming
nonzero constants a11, a12, and a22)

a11x
2 + 2a12xy + a22y

2 + a1x+ a2y + a0 = 0, (2.6)

Then Eq. 2.6 becomes

1. Ellipsoid if a212 < a11a22

2. Hyperbola if a212 > a11a22

3. Parabola if a212 = a11a22.

Note again that parabola is in between ellipsoid and hyperbola. See Fig. 1 for
an illustration.

Example: uxx − 5uxy = 0 is hyperbolic; 4uxx − 12uxy + 9uyy + uy = 0 is
parabolic; 4uxx + 6uxy + 9uyy = 0 is elliptic.
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Figure 1. Three major types of conic section from analytic geometry –
Image source: Wikipedia

Example: The wave equation is one of the most famous examples in hyperbolic
PDEs. We write the wave equation as

utt = c2uxx for −∞ < x <∞, c 6= 0. (2.7)

Factoring the derivative operator, we get

( ∂
∂t
− c ∂

∂x

)( ∂
∂t

+ c
∂

∂x

)
u = 0 (2.8)

Considering the characteristic coordinates ξ = x+ ct and η = x− ct, we obtain

0 =
( ∂
∂t
− c ∂

∂x

)( ∂
∂t

+ c
∂

∂x

)
u =

(
− 2c

∂

∂ξ

)(
2c

∂

∂η

)
u (2.9)

Hence, we conclude that the general solution must have a form u(x, t) = f(x+
ct)+g(x−ct), the sum of two functions, one (g) is a wave of any shape traveling
to the the right at speed c, and the other (f) with another arbitrary shape travel-
ing to the the left at speed c. We call the two families of lines, x±ct = constant,
the characteristic lines of the wave equation.

Example: One very simple and famous example in the parabolic PDEs is so
called the diffusion equation

ut = kuxx, with k constant and (x, t) ∈ D × T (2.10)

One of the important properties in the diffusion equations is to have the maxi-
mum principle. Recall that the maximum principle says if u(x, t) is the solution
of Eq. 2.10 on D×T = [xmin, xmax]× [T0, T1] in space-time, then the maximum
value of u(x, t) is assumed only on the initial and domain boundary of D × T .
That is, the maximum value only occurs either initially at t = T0 or on the sides
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x = xmin or x = xmax.

Remark: The fundamental properties of the two types of PDEs can be briefly
compared in the following table. The physical meanings in Table 1 are also
illustrated in Fig. 2 and Fig. 3.

Table 1. Comparison of Waves and Diffusions: Fundamental properties of
the wave and diffusion equations are summarized.

Property Waves Diffusions

(1) speed of propagation finite (≤ c) ∞
(2) singularities for t > 0? transported along charac-

teristics (with speed = c)
lost immediately

(3) well-posed for t > 0? yes yes (at least for bounded
solutions)

(4) well-posed for t < 0? yes no
(5) maximum principle? no yes
(6) behavior as t→∞ energy is constant so does

not decay (i.e., simple ad-
vection without diffusion)

decays to zero

(7) information transported lost gradually

4. Finite difference scheme for 1D advection

Consider a simple advection equation with constant speed c > 0:

ut + cux = 0, with u(x, 0) = sin(x), x ∈ [0, 2π] (2.11)

with a periodic boundary condition. In order to discretize the system, we first
subdivide both spatial and temporal domains as

xi = i∆x and tn = n∆t, (2.12)

where i and n are integers. ∆x > 0 and ∆t > 0 are respectively, a spatial grid
spacing and a time step. Let us denote our discrete data at each (xi, t

n):

uni = u(xi, t
n) (2.13)

The forward difference scheme writes

ux(x, t) =
u(x+ ∆x, t)− u(x, t)

∆x
+O(∆x), (2.14)

ut(x, t) =
u(x, t+ ∆t)− u(x, t)

∆t
+O(∆t). (2.15)
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Figure 2. Domain and boundaries for the solution of hyperbolic PDEs in
2D. Note that any information or disturbance introduced at p is going to
affect only the region called the ‘region of influence’ but nowhere. Such infor-
mation is propagated with the finite advection speed along the characteristic
surface which forms the conic region of influence. On the other hand, if the
characteristic surface can be extended backward in time to the place where
the initial data is imposed. This also forms another conic section on the lower
part of the figure which is called the ‘domain of dependence’.

Dropping the truncation error terms O(∆x) and O(∆t) yields a simple first-order
difference scheme that approximates the advection PDE. As a result, we arrive
at a first-order accurate discrete difference equation from an analytic differential
equation:

un+1
i − uni

∆t
+ c

uni+1 − uni
∆x

= 0, (2.16)

which gives a temporal update scheme of un+1
i in terms of the known data at

t = tn:

un+1
i = uni − c

∆t

∆x

(
uni+1 − uni

)
(2.17)

On the other hand, if we use a backward difference scheme for ux

ux(x, t) =
u(x, t)− u(x−∆x, t)

∆x
+O(∆x), (2.18)

we arrive at another first-order difference equation

un+1
i = uni − c

∆t

∆x

(
uni − uni−1

)
. (2.19)
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Figure 3. Domain and boundaries for the solution of parabolic PDEs in 2D.
Note that from a given point p in the mid plane, there is only one physically
meaningful direction that is positive in t. Therefore, any information at p
influences the entire region onward from p, called the ’region of influence’.
Such information can only marches forward in time under the assumption
that all boundary conditions around the surface and the initial condition are
known.

Let us choose ∆t small enough that

|c|∆t ≤ ∆x (2.20)

Homework 1. Write a simple MATLAB program (or use any other scientific
language) in order to numerically solve Eq. 2.17 and Eq. 2.19. Please make
sure your code satisfies the condition in Eq. 2.20. Choose t = tmax in such
that the initial sinusoidal wave makes two complete cycles over the domain (we
conveniently assume the cgs unit system – e.g., cm in length, sec in time, gram
in mass.).
(a) Use the grid sizes of 16, 32, 64, 128 and 256 and compare your results.
(b) First solve for c > 0. Which scheme is better between Eq. 2.17 and Eq.
2.19?
(c) What happens if c < 0?
(d) What happens if your ∆t fails to satisfy Eq. 2.20 for your choices of c and
∆x?
(e) Plot your numerical solutions at t = tcycle1 and t = tcycle2 on a grid size of
32 using c > 0 and the scheme in Eq. 2.19. What do you observe?
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5. Numerical Solutions of 1D Diffusion

Consider a temporal evolution of solving the classical homogeneous heat equation
(or diffusion equation) of the form

ut = κuxx (2.21)

with κ > 0 (Note if κ < 0 then Eq. 2.21 would be a “backward heat equation”,
which is an ill-posed problem. See Table 1). Along with this equation, let us
impose an initial condition at t = 0,

u(x, 0) = f(x) (2.22)

and also the Dirichlet boundary condition on a bounded domain 0 ≤ x ≤ 1

u(0, t) = g0(t) and u(1, t) = g1(t), for t > 0. (2.23)

Use the discretization technique we used in the previous example of the 1D
advection finite difference scheme in order to discretize your temporal and spa-
tial domains (i.e., Eq. 2.12 and Eq. 2.13). As before, we choose the forward
difference scheme for temporal discretization as in Eq. 2.15. For a spatial
discretization, we adopt the standard second-order central difference difference
scheme,

uxx(x, t) =
u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
+O(∆x2), (2.24)

which gives a final discrete form of our explicit finite difference scheme for the
heat equation:

un+1
i = uni + κ

∆t

∆x2

(
uni+1 − 2uni + uni−1

)
(2.25)

Similar to the 1D advection case, we choose ∆t satisfying

κ∆t ≤ ∆x2

2
(2.26)

Homework 2. Write a simple MATLAB program (or use any other scientific
language) in order to numerically solve Eq. 2.21. The boundary condition is
given so as to hold the temperature u to be zero at x = 0 and 100◦ F at x = 1
for t ≥ 0 (i.e., g0 = 0◦F and g1 = 100◦F.). Your numerical scheme solves three
different temporal evolutions for three materials:

(i) iron with κ = 0.230cm2/sec,
(ii) aluminum κ = 0.975cm2/sec, and
(iii) copper with κ = 1.156cm2/sec.

Choose t = tmax in each so that each material reaches to a steady state solution.
Your initial condition in all three cases is to describe a same initial temperature
profile

f(x) = 0◦F for 0 ≤ x < 1; f(x) = 100◦F for x = 1 (2.27)

(a) Use the grid sizes of 16, 32, 64, 128 and 256 and compare your results. What
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can you say about the grid resolution study in the diffusion equation as com-
pared to the case of the advection equation?
(b) What happens if your ∆t fails to satisfy Eq. 2.26 for each κ?
(c) What are your values of tmax for three different materials?



Chapter 3

Scalar Conservation Laws -
Theories

In many practical applications of CFD, one mostly tackles physical phenomena
described by ‘systems’ of (nonlinear) equations such as the Euler or Navier-
Stokes equations. Solving such systems is more complicated than solving a
scalar equation (linear or nonlinear) in both mathematical and computational
aspects.

However, we often gain rich insights in our understandings of the more
complicated systems from studying the simpler systems first. In this chapter,
we seek for a good understanding of the linear and nonlinear scalar advection
equations, whereby it will enlighten us in achieving our bigger goals in studying
the systems of (nonlinear) conservation laws later.

1. Linear scalar equations

We consider two types of linear scalar advection equations, one with a constant
velocity a, and the other with a variable velocity a(t). Let’s first take a look at
the 1D linear scalar advection equation for t ≥ 0 written as

ut + aux = 0 (3.1)

with a constant advection velocity a, and together with initial conditions on R,

u(x, 0) = u0(x). (3.2)

As shown in the previous chapter, we know the solution is given by

u(x, t) = u0(x− at) (3.3)

for t ≥ 0. Recall that x − at = x0 is called the characteristic line with a given
constant x0 and with the propagation velocity a. Depending on the sign of a,
the initial data u0(x) is advected (or transported) – hence the name ‘advection
equation’ – to the right (if a > 0) or left (if a < 0). Note that there are infinitely
many characteristic lines in the x-t plane as there are infinite choices of x0 ∈ R.
See Fig. 1.

26
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Figure 1. Characteristic curves and the advection of the solution. All in-
formation is simply advected to the later time solution u(x, t) along the char-
acteristic curves in the x-t plane without any shape changes from the initial
condition u0(x).

In general, the characteristics are curves (or simply ‘the characteristics’) in
the x-t plane satisfying the ODEs

x′(t) = a and x(0) = x0. (3.4)

One very important property on the characteristics is that the solution
u(x, t) of the constant velocity a remains as constant along the characteristics.
To see this,

d

dt
u(x(t), t) =

∂

∂t
u(x(t), t) +

∂

∂x
u(x(t), t)x′(t) = ut + aux = 0, (3.5)

confirming the claim.
In the more general case of the scalar equation with the variable velocity

a(x(t)), we consider

ut +
(
a(x(t))u

)
x

= 0. (3.6)

In this case, the characteristics are no longer straight lines satisfying

x′(t) = a(x(t)) and x(0) = x0, (3.7)

and the solution u(x, t) is no longer constant along the characteristics. This can
be easily verified if we rewrite Eq. 3.6 as

ut + a(x(t))ux = −a′(x(t))u, (3.8)

therefore we obtain
d

dt
u(x(t), t) = −a′(x(t))u 6= 0. (3.9)

In both cases of the constant and variable velocities, the solution can be easily
determined by solving sets of ODEs.
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Remark: In words, the characteristic curves track the motion of material par-
ticles.

Remark: We can see that if u0(x) ∈ Ck(R) then u(x, t) ∈ Ck(R)× (0,∞).

Remark: So far, we have assumed differentiability of u(x, t) in manipulating
the above relations. Note that this assumption makes it possible to seeks for a
classical solution u(x, t) of the differential equations.

1.1. Domain of dependence & Range of influence

We now make an important observation in solutions to the linear advection
equations:

The solution u(x, t) at any point (x̄, t̄) depends only on the
initial data u0 only at a single point, namely x̄0 such that (x̄, t̄)
lies on the characteristic through x̄0.

This means that the solution u(x̄, t̄) will remain unchanged no matter how
we change the initial data at any points other then x̄0. We now define two
related regions, the first is called the domain of dependence, and the second is
called the range of influence.

Definition: The set D̄(x̄, t̄) = {x̄ − λmt̄ : m = 1, 2, ..., p} is called the domain
of dependence of the point (x̄, t̄), where p is the total number of characteristic
velocities (or the number of equations of hyperbolic PDE systems). See Fig. 2
for an illustration.

Remark: For convenience, let us assume λ1 ≤ ... ≤ λm ≤ ... ≤ λp. Note that
p = 1 for scalar hyperbolic equations, whereas p > 1 for systems of hyperbolic
equations. For instance, p = 3 for the systems of 1D Euler equations (1 conti-
nuity equations, 1 momentum equation, and 1 energy equation).

Note: What are the values of p for the systems of 2D Euler and 3D Euler
equations?

Definition: The region R = {x : λ1t ≤ x − x0 ≤ λpt} is called the range of
influence of the point x0. See Fig. 3 for an illustration.

Note: One can always find a bounded set D = {x : |x − x̄| ≤ λpt} such that
D̄(x̄, t̄) ⊂ D. The existence of D̄ and R are the consequence of the fact that
hyperbolic equations have finite propagation speed; information can travel with
speed at most

maxm{|λm| : m = 1, ..., p}

.
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Figure 2. The domain of dependence of the point (x̄, t̄) for a typical hyper-
bolic system of three equations with λ1 < 0 < λ2 < λ3. Note that one can
always find a bounded domain D such that D̄ ⊂ D because of the fact that
the propagation velocities (or characteristic velocities) of hyperbolic PDEs are
always finite.

1.2. Non-smooth data

Consider for a moment what happens if u0(x) has a singularity at some point
x0 (i.e., a discontinuity in u0 or some derivatives). In this case, the resulting
u(x, t) will have a singularity of the same order along the characteristic curve
though x0. This is a fundamental property of linear hyperbolic equations in
which singularities are simply advected only along characteristics (Also see Fig.
2). This is because the solution, u(x, t) = u0(x−at), along a characteristic curve
x − at = x0, only depends on the one and only value u0(x0), thus allowing a
non-smooth“solution” to the PDE even if u0(x) is not smooth.

Such non-smooth solution, although it is no longer a classical solution of
the differential equation everywhere, does satisfy the integral form of the con-
servation law, which continues to make sense for non-smooth u as long as u is
an integrable function.
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Figure 3. The range of influence R = {x : λ1t ≤ x − x0 ≤ λ3t} of the
point x0 of the same problem in Fig. 2. Notice that the conic region R is a
symmetric image of D with respect to (x̄, t̄), shifted to t = 0 axis.

Therefore, it may sound like a perfect idea to accept this concept – i.e.,
integrating along characteristics regardless of the regularity of u0(x) – in order
to achieve a generalized solution u(x, t). Unfortunately, we can no longer simply
integrate along characteristics when solving the nonlinear equations (yes, the
linear case is relatively too easy!) because the nonlinear characteristic curves
often converge (collide) each other to form a shock, losing their characteristic
information for good. The nonlinear equations also can develop singularities
even from a smooth initial data u0(x).

One working idea that can be generalized to both linear and nonlinear
equations, is to leave the initial data alone but modify the PDE by adding a small
diffusive term εuxx and take the limit of the diffusive term as ε→ 0. The solution
obtained this way is called the vanishing viscosity solution. Mathematically, one
writes an advection-diffusion equation

ut + aux = εuxx (3.10)

as an approximation to the advection equation for very small ε > 0. Notice that
we can always find the solution uε ∈ C∞(R) × R+ to Eq. 3.10 even if u0(x) is
not smooth, because Eq. 3.10 is a parabolic equation (why? See Homework 1).
We can therefore obtain a generalized solution u(x, t) by

lim
ε→0

uε(x, t) = u(x, t). (3.11)

Homework 1 Use a change of variables to follow the characteristics and set

vε(x, t) = uε(x+ at, t). (3.12)
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First show that vε satisfies the heat equation

vεt(x, t) = εvεxx(x, t). (3.13)

Now show that, using the well-known solution to the heat equation to solve for
vε(x, t), show that we have

uε(x, t) = vε(x− at, t), (3.14)

where
lim
ε→0

uε(x, t) = u0(x− at). (3.15)

2. Nonlinear scalar equations

We now move on to consider the nonlinear scalar equation

ut +
(
f(u)

)
x

= 0 (3.16)

where f(u) is a nonlinear function of u and is called the flux function. There are
two types of flux functions that give rise to different solution behaviors, especially
involving solution structures containing shocks and/or rarefaction waves:

1. f(u) is a convex function – i.e., f ′′(u) > 0, ∀u (or, equally well, f is concave
with f ′′(u) < 0, ∀u): e.g., the Burger’s equation, the Euler equations, the
Navier-Stokes equations.

2. f(u) is a non-convex function: e.g., the Buckley-Leverett equation, mag-
netohydrodynamics (MHD) equations.

Remark: Later, we will see that the “convexity” assumption in the nonlinear
scalar equation corresponds to a “genuinely nonlinearity” assumption for sys-
tems of equations.

Definition: If we rewrite Eq. 3.16 in nonconservation form, we get ut +
f ′(u)fx(u) = 0. The derivative of the flux function

λ(u) = f ′(u) =
df

du
(3.17)

is called the characteristic speed.

Remark:

1. In the system case,

0 = Ut + F(U)x = Ut +
∂F

∂U

∂U

∂x
, (3.18)

the characteristic speed corresponds to the eigenvalues of the Jacobian
matrix ∂F

∂U .
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2. For the linear scalar advection case, we already saw that df
du = a.

By far the most famous and popular example in the nonlinear scalar equa-
tions is Burgers’ equation, in which the flux function is given as

f(u) =
u2

2
, (3.19)

hence resulting in the equation in the nonconservation form as

ut + uux = 0. (3.20)

We now take a look at the its mathematical properties from two different
perspectives: (i) for small t, and (ii) for large t.

2.1. Burgers’s equation for small ts

Let’s first assume that the initial data u0(x) is smooth and no singularity is
observed for 0 < t ≤ ts. In this case, we can conveniently follow characteristics

x′(t) = u(x(t), t) (3.21)

along which the solution u(x, t) is constant, since

d

dt
u(x(t), t) =

∂

∂t
u(x(t), t) +

∂

∂x
u(x(t), t)x′(t) = ut + uux = 0. (3.22)

This also tells us that the slope x′(t) is constant, and so the characteristics are
straight lines, determined by the initial data. See Fig. 4.

Therefore, if the initial data u0 = u(ξ, 0) is smooth, and if ts is chosen small
enough so that the characteristics do not cross each others, we can solve the
equation

x = ξ + u(ξ, 0)ts (3.23)

for ξ, and thus we obtain a well-defined solution

u(x, ts) = u(x− u(ξ, 0)ts, 0). (3.24)

2.2. Burgers’s equation for large tb: Shock formation

For large t = tb at or after which the characteristics cross, Eq. 3.23 may not
have a unique solution. This indeed will occur if u′0(ξ) < 0 at any point ξ –
that is, if u0(ξ) is a monotone decreasing function of ξ then the characteristics
x(t) = ξ(t) + u0(ξ(t))t eventually cross at some finite time t = tb at which the
wave will break and develop into a shock. When this first happens at t = tb, the
function u(x, t) has an infinite slope, beyond which there is no classical solution
of the PDE, and the (weak) solution becomes discontinuous. See Fig. 5.

Homework 2 Given a smooth initial data u0(ξ) for Burgers’ equation with its
slope u′0(ξ) < 0 at some point ξ0. Show that the wave break time tb is written
as

tb =
−1

u′0(ξ0)
. (3.25)
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Figure 4. Characteristics and solution for Burgers’ equation for small t = ts.

Recall that in the case of the linear scalar advection, in which the charac-
teristic speed is constant, df/du = a, the solution is simply a translated form of
the initial data with speed a without any distortion (see Fig. 1). In the nonlin-
ear case the characteristic speed is a function of the solution u(x, t) itself – e.g.,
df/du = u for Burgers’ equation, therefore, distortions are inevitably produced.
This is a distinctive feature of nonlinear problem.

To see the wave distortion phenomenon – also referred to as ‘the wave
steepening’ – we refer to the initial condition u0(x) depicted as in Figs. 4
& 5. First, note that the flux function for Burgers’ equation is convex (i.e.,
f ′′(u) = 1 > 0), and therefore, its characteristic speed (i.e., f ′(u) = u) is an
increasing function of u – the characteristic speed of Burgers’ equation is u itself.
The behavior of the characteristic speed therefore depends on the behavior of u.
Specifically, the initial characteristics xm(t) emanating from the initial points
x̄m, m = 1, ..., p have the form (see also Fig. 3)

xm(t) = x̄m + u0(x̄m)t. (3.26)

We see that depending on how u0(x) increases or decreases as a function of x,
the initial characteristic speeds vary, and the characteristic curves can cross. We
can think of two intervals Ie and Ic on the x-axis where distortions are more
evident. See Fig. 6 for an illustration. If we let x̄0 to be a point where u′0(x̄0) = 0
(i.e., x̄0 is a local maximum point of u0), and take

Ie = [x̄+, x̄0], Ic = [x̄0, x̄−], (3.27)

where x̄+ and x̄− are the points where u0 starts to increase and stops to decrease
as x, respectively, as shown in Fig. 6. We say that Ie is an expansive region
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Figure 5. Characteristics and solution for Burgers’ equation for large t = tb.
The characteristics cross and a shock is formed as a result.

where the characteristic speed keeps increasing as x increases. On the contrary,
Ic is a compressive region where the characteristic speed decreases with x. It
is easy to see that the characteristics from Ie and Ic will eventually cross each
others, generating a sharp discontinuous profile of u(x, t) for t > tb, although
the initial data u0(x) was smooth to begin with.

For times t > tb some of the characteristics have crossed. When this hap-
pens, there are points x where there are three characteristics leading back to
t = 0. The solution u at such a time is a triple-valued function as seen in Fig. 7.
Although there exist some cases that this makes sense, such as a breaking ocean
wave modeled by the shallow water equations, in most physical situations, this
doesn’t make sense. For instance, the density of a gas cannot be triple valued
at a given point.

As seen in Homework 1, one way to determine the correct physical be-
havior can be achieved by adopting the vanishing discontinuity approach. There
is yet another approach that results in a differential integral formulation that is
often more convenient to work with. This approach is available by considering
so-called the weak solutions and this is discussed in the next section in more
detail.

2.3. Weak solutions

In order to successfully seek for physically meaningful solutions u(x, t) of PDEs
that are relevant to various physical phenomena, it would be much more desir-
able if we can relax those mathematical constraints on smoothness in u(x, t).
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Figure 6. Characteristics crossing for Burgers’ equation for large t > tb.

In other words, we wish to come up with a mathematical technique that can
be applied more generally to rewrite a differential equation in a form where less
regularity is required to define a ‘solution’. The weak solution approach is, in
that sense, is one such technique we are now considering. The basic idea is to
take the PDE, multiply by a smooth “test function”, integrate one or more times
over some domain, and then use integration by parts to move derivatives off the
function u and onto the smooth test function. The outcome is an equation in-
volving fewer derivatives on u, and hence requiring less smoothness.

Definition: The function u(x, t) is called a weak solution of the scalar conser-
vation law ut + fx = 0 if it satisfies the following condition for all test functions
φ(x, t) ∈ C1

0 (R× R+):

∫

R+

∫

R
[φtu+ φxf(u)]dxdt = −

∫

R
φ(x, 0)u(x, 0)dx. (3.28)

Note: C1
0 is the space of functions that are continuously differentiable (C1)

with compact support.

Note: f ∈ C0(R) iff f = 0 in outside of some bounded sets and the support of
f lies in a compact set. The support of f , supp(f) = {x ∈ X : f(x) 6= 0}.

Remark: One can obtain Eq. 3.28 by multiplying φ to ut + fx = 0 and then
integrate over space and time,

∫

R+

∫

R
[φut + φf(u)x]dxdt = 0. (3.29)
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Figure 7. Triple-valued solution to Burgers’ equation for large t > tb.

Finally, integrating Eq. 3.29 by part gives the definition of a weak solution
in Eq. 3.28. Notice that nearly all the boundary terms which normally arise
through integration by parts drop out because φ has compact support, hence
becomes zero outside of some bounded region of the x-t plane. The RHS in Eq.
3.28 bears the initial conditions of the PDE which cannot be ignored in the weak
formulation.

Quick summary: A nice feature of Eq. 3.28 is that the derivatives are on the
smooth test function φ, and no longer on u and f(u). This enables Eq. 3.28 to
take some discontinuous u as a solution in this weak sense.

Remark: If u is a weak solution, then u also satisfies the original integral con-
servation law, and vice versa.

Remark: With the help of weak solutions, can we say we are now happy about
solving nonlinear scalar conservation laws? The answer is not really yet, unfor-
tunately. One of the reasons is that weak solutions are often not unique and
therefore, we need some criteria to choose a physically correct weak solution
among choices. To do this, we will consider a condition called the ‘entropy con-
dition’ at the end of this chapter.
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2.4. The Riemann problem

The conservation law together with piecewise constant data separated by a single
discontinuity is known as the Riemann problem (RP). There are two physically
admissible types of solutions, (i) shock solution, and (ii) rarefaction solution,
which we will consider here in detail.

The RP involves a PDE with piecewise constant initial data,

u(x, 0) =

{
ul if x < 0
ur if x > 0

(3.30)

and the form of the solution, as will be shown, closely depends on the relation
between ul and ur.

• Case I: ul > ur In this case, there is a unique weak solution

u(x, t) =

{
ul if x < st
ur if x > st

(3.31)

where s is a shock speed, the speed at which the discontinuity travels. We
are going to study how to compute a general expression for the shock speed
in the next section. The characteristics in each left and right regions where
u is constant (i.e., either ul or ur) go into the shock as time advances. See
Fig. 8 and Fig. 9.

Note: We note for the RP with a shock solution, the characteristic speeds
f ′(u) satisfy the following converging characteristic condition:

f ′(ul) > s > f ′(ur) (3.32)

where s is a shock speed.

• Case II: ul < ur In this case there are infinitely many weak solutions,
therefore, we need to choose a physically correct weak solution. Our first
attempt is to apply the exact same idea as in Case I in which the disconti-
nuity propagates with speed s. This now allows the characteristics go out
of the shock as illustrated in Fig. 10. This type of weak solution is called
the entropy violating solution and needs be rejected. One crucial reason
for rejecting this solution as a physical solution is because the solution is
not stable to perturbation (also recall the three requirements for well-posed
PDEs we studied in Chapter 2). This means that small perturbations of
the initial data lead to large changes in the solution. For example, if the
data is smeared out little bit, or if a small amount of viscosity is added to
the equation, the solution changes completely.

Another weak solution is the rarefaction wave

u(x, t) =





ul if x < ult
x/t if ult ≤ x ≤ urt
ur if x > urt

(3.33)
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Figure 8. Weak solution of shock wave to the Riemann problem ul > ur.

This solution is stable to perturbation and is in fact the physically correct
weak solution satisfying the vanishing viscosity approach.

Note: We note for the RP with a rarefaction solution, the characteristic
speeds f ′(u) satisfy the following diverging characteristic condition:

f ′(ul) < f ′(ur). (3.34)

Remark: Before proceeding to the next section, we briefly study four variants
of the integral form of conservation laws ut + fx = 0. Recalled that we already
have studied this in Chapter 1. This time, we choose a control volume V =
[xL, xR]× [t1, t2] on the x-t plane.

1. Integral form I:

d

dt

∫ xR

xL

u(x, t)dx = f(u(xL, t))− f(u(xR, t)) (3.35)

2. Integral form II: Integrating Integral form I in time gives

∫ xR

xL

u(x, t2)dx−
∫ xR

xL

u(x, t1)dx =

∫ t2

t1

f(u(xL, t))dt−
∫ t2

t1

f(u(xR, t))dt

(3.36)
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Figure 9. Weak solution of shock wave to the Riemann problem ul > ur.
The characteristic curves are drawn in blue in the x-t plane. The dark orange
shaded plane is the shock plane due to the crossing of the characteristics from
the two discontinuous initial data ul and ur. The shock plane travels with
the shock speed s which will be studied by considering the Rankine-Hugoniot
jump condition in the next section.

3. Integral form III: Integrating ut+ fx = 0 in any domain V in the x-t plane
and using Green’s theorem, we obtain

∮

∂V
[udx− f(u)dt] = 0 (3.37)

4. Integral form IV: The last variant is the integral relation that the weak
or generalized solution u satisfies (see also Eq. 3.28) for all test function
φ(x, t) ∈ C1

0 (R× R+):

∫

R+

∫

R
[φtu+ φxf(u)]dxdt = −

∫

R
φ(x, 0)u(x, 0)dx. (3.38)

2.5. Shock speed: the Rankine-Hugoniot jump condition

The propagating shock solution in Eq. 3.31 is a weak solution only with a proper
value of the shock speed s. In fact, a correct shock speed s can be determined
by considering conservation – called the Rankine-Hugoniot jump condition.

Consider a solution u(x, t) such that u(x, t) and f(u) and their derivatives
are continuous everywhere except on a line S = S(t) on the x-t plane across
which u(x, t) has a jump discontinuity. Choose two fixed points xL and xR such
that xL < S(t) < sR. Adopting Integral form I on the control volume [xL, xR],
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Figure 10. Entropy-violating shock and should be rejected.

we have

f(u(xL, t))− f(u(xR, t)) =
d

dt

∫ S(t)

xL

u(x, t)dx+
d

dt

∫ xR

S(t)
u(x, t)dx, (3.39)

which becomes

f(u(xL, t))−f(u(xR, t)) =
(
u(SL, t)−u(SR, t)

)dS
dt

+

∫ S(t)

xL

ut(x, t)dx+

∫ xR

S(t)
ut(x, t)dx,

(3.40)
where

u(SL, t) = lim
x↑S(t)

u(S(t), t), (3.41)

u(SR, t) = lim
x↓S(t)

u(S(t), t) (3.42)

Note the two integrals in Eq. 3.40 become
∫ S(t)

xL

ut(x, t)dx = −
∫ S(t)

xL

fx(u(x, t))dx = f(u(xL, t))− f(u(SL, t)), (3.43)

∫ xR

S(t)
ut(x, t)dx = −

∫ xR

S(t)
fx(u(x, t))dx = f(u(SR, t))− f(u(xR, t)). (3.44)

After canceling f(u(xL, t))− f(u(xR, t)) from both sides, we finally obtain

f(u(SL, t))− f(u(SR, t)) =
(
u(SL, t)− u(SR, t)

)
s, (3.45)
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Figure 11. Entropy satisfying weak solution – the rarefaction wave.

where we introduced s = dS/dt the speed of the discontinuity.

Definition: The relation in Eq. 3.45 is called the Rankine-Hugoniot jump
condition (RH condition) and it provides a relation between the shock speed s
and the states ul = u(SL, t) and ur = u(SR, t). We often denote shock speed s
in the RH condition using brackets as follow:

s =
[f ]

[u]
≡

limx↓S(t) f(u(x, t), t)− limx↑S(t) f(u(x, t), t)

limx↓S(t) u(x, t)− limx↑S(t) u(x, t)
. (3.46)

Homework 3 Consider Burgers’ equation

ut +
(u2

2

)
x

= 0 (3.47)

(a) By multiplying the equation by 2u, show that you can derive a new conser-
vation law for u2. What is the new flux function?
(b) Show that the original Burgers’ equation and the new derived equation have
different weak solutions (Hint: It suffices to show that there exist two different
shock speeds from the two equations for the Riemann problem with ul > ur.).

2.6. Entropy conditions

As demonstrated in Homework 3 above, there are situations in which the weak
solution is not unique. It is therefore natural to ask for an additional condition
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to pick out the physically relevant solution. Recall that we’ve already seen there
is an obvious condition for the characteristic speeds in Eq. 3.32. A shock should
have characteristics going into the shock as time evolves. We are now ready to
state it and call it the entropy condition:

Definition: A discontinuity propagating with speed s given by Eq. 3.45 (or
equivalently, Eq. 3.46) – that is, the two data states ul and ur are connected
through a single discontinuity with its speed s – satisfies the entropy condition
if

f ′(ul) > s > f ′(ur), (3.48)

or equivalently,
λ(ul) > s > λ(ur). (3.49)

Remark: On the other hand, if the two data states ul and ur are connected
through a smooth transition – i.e., rarefaction wave – the divergence relation of
the characteristics holds:

f ′(ul) < f ′(ur) (3.50)

or equivalently,
λ(ul) < λ(ur). (3.51)

Example: Let’s consider Burgers’ equation on R with the following initial
conditions:

u(x, 0) =

{
0 if x < 0
1 if x > 0

(3.52)

We can first try to obtain an entropy violating solution, and we know that this
solution needs to be rejected anyway as it is ill-posed. But we are going to find
this solution to practice what we already learned in this chapter. If we apply
the RH condition to this problem – which is wrong to do so – to compute the
shock speed s, we get

s =
f(ur)− f(ul)

ur − ul
=

1

2
. (3.53)

This results in the following entropy violating self-similar solution

u(x, t) =

{
0 if x

t <
1
2

1 if x
t >

1
2

(3.54)

which is shown in Fig.12.
Let us try again to get the correct weak solution this time. Consider the

following self-similar solution

u(x, t) =





0 if x
t < 0

x/t if 0 < x
t < 1

1 if x
t > 1.

(3.55)

We can check that the wave diagram for this solution is plotted in Fig. 13. It
is also easy to check if this solution, especially the part in the expansion region,
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satisfies the Burgers’ equation. To see this,

∂u

∂t
+ u

∂u

∂x
=

∂

∂t

(x
t

)
+
x

t

∂

∂x

(x
t

)
= − x

t2
+
x

t

1

t
= 0. (3.56)

Figure 12. Wave diagram for the wrong entropy violating weak solution.

Example: Let’s consider Burgers’ equation on R with the following initial
conditions for t ≤ 4/3:

u(x, 0) =

{
1 if |x| < 1/3
0 if |x| > 1/3

(3.57)

We see that the jump at x = −1/3 creates a rarefaction wave solution; the jump
at x = 1/3 crates a shock solution. For t ≤ 4/3 the shock and the rarefaction fan
do not intersect each other and therefore, we can seek for the exact piecewise-
linear solution as follows.
Let us first compute the shock speed using RH with ul = 1 and ur = 0:

s =
f(ur)− f(ul)

ur − ul
=

1

2
, (3.58)

which gives the characteristic curve (the red thick line in Fig. 14) for shock
x− 1/2t = 1/3.
We also consider the first characteristic curve right next to the rarefaction region
– this is the left most purple line in Fig. 14. Since the characteristic slope is
f ′(u)|u=1 = 1, we obtain the relation x− t = −1/3. From these we easily obtain
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Figure 13. Wave diagram for the correct rarefaction wave weak solution.

the exact weak solution as follows:

u(x, t) =





0 if x < −1
3

x+1/3
t if − 1

3 < x < t− 1
3

1 if t− 1
3 < x < 1

2 t+ 1
3

0 if x > 1
2 t+ 1

3

(3.59)

Note that at t = 4
3 we get 1

2 t + 1
3 = t − 1

3 , and as a result, the shock and the

rarefaction solutions intersect for t > 4
3 .

Homework 4 Solve Burgers’ equation on R for small enough t ≤ tb that allows
the exact piecewise-linear weak solution with the following initial conditions:

u(x, 0) =

{
2 if |x| < 1/2
−1 if |x| > 1/2

(3.60)

Find the time tb when the two waves first intersect. Draw a wave diagram for
the weak solution.



45

Figure 14. Wave diagram of the weak solution for t ≤ 4/3.



Chapter 4

Discrete Numerical
Approaches

We review several key ideas on numerical methods that discretize PDEs and
provide approximated solutions to numerical PDE models derived from the ana-
lytical PDEs. Three major methods are briefly described along with the principal
advantages and drawbacks in each method. Three solution schemes include:

• Finite difference method (FD)

• Finite volume method (FV)

• Finite element method (FE)

Some other approaches also used in many CFD applications include:

• Discontinuous Galerkin (DG) (or, discontinuous FE as compared to the
standard ‘continuous’ FE)

• Spectral element (SE)

In general, a proper choice of numerical approaches strongly depends on
various components of your problem, including especially the following factors:

• Flow regimes – e.g., compressible (FV) vs. incompressible (FD), high Mach
number (FV) vs. low Mach number (low Mach number scheme), turbulent
(subgrid models) vs. laminar (boundary layer), advection dominated (FV,
FD, DG) vs. diffusion dominated (FE)

• Physics of flows – e.g., macroscopic (fluid models: FV, FD, FE) vs. micro-
scopic (kinetic models: PIC – particle-in-cell), hydrodynamcis vs. magne-
tohydrodynamics vs. rad-hydro, single-fluid (sigle bulk velocity) vs. multi-
fluid (multiple bulk velocity), advection dominated (explicit) vs. diffusion
dominated (implicit) vs. combined (explicit & implicit via operator split),
gravitational flow (elliptic solver)

• Geometry of flows – e.g., rectangular domain (FD) vs. engineering flow
(complicated physical boundaries such as bridges, airplane, airfoils, cars,
buildings – mostly FE, but also FV), localized dynamics (AMR – adaptive
mesh refinements; stretched grid) vs. global dynamics (UG – uniform grid)

46
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• Numerical issues – ease of high-order implementation (FD, FE, DG) vs.
difficulty in high-order implementation (FV), ease of multi-dimensional
extension (FD) vs. difficulty in multi-dimensional extension (FV)

Our primary interest in this course lies in studying the first two methods,
FD and FV. Later, we are going to use FD and FV approaches to solve linear
advection equation and linear hyperbolic systems. Such fundamental ideas of
solving linear hyperbolic PDEs will be extended to the nonlinear cases.

For the rest of the study in this chapter, we are going to refer to a short
article by Joaquim Peiró and Spencer Sherwin which provides a nice overview
and comparison of three discrete finite approaches, FD, FE, and FV:

• “Finite difference, finite element and finite volume methods for partial
differential equations” (enclosed below).
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FINITE DIFFERENCE, FINITE ELEMENT
AND FINITE VOLUME METHODS
FOR PARTIAL DIFFERENTIAL
EQUATIONS

Joaquim Peiró and Spencer Sherwin
Department of Aeronautics, Imperial College, London, UK

There are three important steps in the computational modelling of any
physical process: (i) problem definition, (ii) mathematical model, and
(iii) computer simulation.

The first natural step is to define an idealization of our problem of
interest in terms of a set of relevant quantities which we would like to mea-
sure. In defining this idealization we expect to obtain a well-posed problem,
this is one that has a unique solution for a given set of parameters. It might not
always be possible to guarantee the fidelity of the idealization since, in some
instances, the physical process is not totally understood. An example is the
complex environment within a nuclear reactor where obtaining measurements
is difficult.

The second step of the modeling process is to represent our idealization of
the physical reality by a mathematical model: the governing equations of the
problem. These are available for many physical phenomena. For example, in
fluid dynamics the Navier–Stokes equations are considered to be an accurate
representation of the fluid motion. Analogously, the equations of elasticity in
structural mechanics govern the deformation of a solid object due to applied
external forces. These are complex general equations that are very difficult to
solve both analytically and computationally. Therefore, we need to introduce
simplifying assumptions to reduce the complexity of the mathematical model
and make it amenable to either exact or numerical solution. For example, the
irrotational (without vorticity) flow of an incompressible fluid is accurately
represented by the Navier–Stokes equations but, if the effects of fluid viscos-
ity are small, then Laplace’s equation of potential flow is a far more efficient
description of the problem.

1
S. Yip (ed.),
Handbook of Materials Modeling. Volume I: Methods and Models, 1–32.
c© 2005 Springer. Printed in the Netherlands.
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After the selection of an appropriate mathematical model, together with
suitable boundary and initial conditions, we can proceed to its solution. In this
chapter we will consider the numerical solution of mathematical problems
which are described by partial differential equations (PDEs). The three classical
choices for the numerical solution of PDEs are the finite difference method
(FDM), the finite element method (FEM) and the finite volume method (FVM).

The FDM is the oldest and is based upon the application of a local Taylor
expansion to approximate the differential equations. The FDM uses a topo-
logically square network of lines to construct the discretization of the PDE.
This is a potential bottleneck of the method when handling complex geome-
tries in multiple dimensions. This issue motivated the use of an integral form
of the PDEs and subsequently the development of the finite element and finite
volume techniques.

To provide a short introduction to these techniques we shall consider each
type of discretization as applied to one-dimensional PDEs. This will not allow
us to illustrate the geometric flexibility of the FEM and the FVM to their full
extent, but we will be able to demonstrate some of the similarities between the
methods and thereby highlight some of the relative advantages and disadvan-
tages of each approach. For a more detailed understanding of the approaches
we refer the reader to the section on suggested reading at the end of the chapter.

The section is structured as follows. We start by introducing the concept of
conservation laws and their differential representation as PDEs and the alter-
native integral forms. We next discusses the classification of partial differential
equations: elliptic, parabolic, and hyperbolic. This classification is important
since the type of PDE dictates the form of boundary and initial conditions
required for the problem to be well-posed. It also, permits in some cases, e.g.,
in hyperbolic equations, to identify suitable schemes to discretise the differen-
tial operators. The three types of discretisation: FDM, FEM and FVM are then
discussed and applied to different types of PDEs. We then end our overview by
discussing the numerical difficulties which can arise in the numerical solution
of the different types of PDEs using the FDM and provides an introduction to
the assessment of the stability of numerical schemes using a Fourier or Von
Neumann analysis.

Finally we note that, given the scientific background of the authors, the
presentation has a bias towards fluid dynamics. However, we stress that the
fundamental concepts presented in this chapter are generally applicable to
continuum mechanics, both solids and fluids.

1. Conservation Laws: Integral and Differential Forms

The governing equations of continuum mechanics representing the kine-
matic and mechanical behaviour of general bodies are commonly referred
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to as conservation laws. These are derived by invoking the conservation of
mass and energy and the momentum equation (Newton’s law). Whilst they are
equally applicable to solids and fluids, their differing behaviour is accounted
for through the use of a different constitutive equation.

The general principle behind the derivation of conservation laws is that the
rate of change of u(x, t) within a volume V plus the flux of u through the
boundary A is equal to the rate of production of u denoted by S(u, x, t). This
can be written as

∂

∂t

∫

V

u(x, t) dV +
∫

A

f(u) · n dA −
∫

V

S(u, x, t) dV = 0 (1)

which is referred to as the integral form of the conservation law. For a fixed
(independent of t) volume and, under suitable conditions of smoothness of the
intervening quantities, we can apply Gauss’ theorem

∫

V

∇ · f dV =
∫

A

f · n dA

to obtain
∫

V

(
∂u

∂t
+ ∇ · f (u) − S

)
dV = 0. (2)

For the integral expression to be zero for any volume V , the integrand must be
zero. This results in the strong or differential form of the equation

∂u

∂t
+ ∇ · f (u) − S = 0. (3)

An alternative integral form can be obtained by the method of weighted
residuals. Multiplying Eq. (3) by a weight function w(x) and integrating over
the volume V we obtain

∫

V

(
∂u

∂t
+ ∇ · f (u) − S

)
w(x) dV = 0. (4)

If Eq. (4) is satisfied for any weight function w(x), then Eq. (4) is equivalent
to the differential form (3). The smoothness requirements on f can be relaxed
by applying the Gauss’ theorem to Eq. (4) to obtain

∫

V

[(
∂u

∂t
− S

)
w(x) − f (u) · ∇w(x)

]
dV +

∫

A

f · n w(x) dA = 0.

(5)

This is known as the weak form of the conservation law.
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Although the above formulation is more commonly used in fluid mechan-
ics, similar formulations are also applied in structural mechanics. For instance,
the well-known principle of virtual work for the static equilibrium of a body
[1], is given by

δW =
∫

V

(∇�+ f ) · δ� dV = 0

where δW denotes the virtual work done by an arbitrary virtual velocity δ�,
� is the stress tensor and f denotes the body force. The similarity with the
method of weighted residuals (4) is evident.

2. Model Equations and their Classification

In the following we will restrict ourselves to the analysis of one-dimensional
conservation laws representing the transport of a scalar variable u(x, t) defined
in the domain � = {x, t : 0 ≤ x ≤ 1, 0 ≤ t ≤ T }. The convection–diffusion-
reaction equation is given by

L(u) =
∂u

∂t
+ ∂

∂x

(
au − b

∂u

∂x

)
− r u = s (6)

together with appropriate boundary conditions at x = 0 and 1 to make the prob-
lem well-posed. In the above equation L(u) simply represents a linear differen-
tial operator. This equation can be recast in the form (3) with f (u) = au − ∂u/∂x
and S(u) = s + ru. It is linear if the coefficient a, b, r and s are functions of x
and t , and non-linear if any of them depends on the solution, u.

In what follows, we will use for convenience the convention that the pres-
ence of a subscript x or t under a expression indicates a derivative or partial
derivative with respect to this variable, for example

ux(x) =
du

dx
(x); ut(x, t) =

∂u

∂t
(x, t); uxx(x, t) =

∂2u

∂x2
(x, t).

Using this notation, Eq. (6) is re-written as

ut + (au − bux)x − ru = s.

2.1. Elliptic Equations

The steady-state solution of Eq. (6) when advection and source terms are
neglected, i.e., a=0 and s=0, is a function of x only and satisfies the Helmholtz
equation

(bux)x + ru = 0. (7)
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This equation is elliptic and its solution depends on two families of integration
constants that are fixed by prescribing boundary conditions at the ends of the
domain. One can either prescribe Dirichlet boundary conditions at both ends,
e.g., u(0) = α0 and u(1) = α1, or substitute one of them (or both if r =/ 0) by a
Neumann boundary condition, e.g., ux(0) = g. Here α0, α1 and g are known
constant values. We note that if we introduce a perturbation into a Dirichlet
boundary condition, e.g., u(0) = α0 + ε, we will observe an instantaneous
modification to the solution throughout the domain. This is indicative of the
elliptic nature of the problem.

2.2. Parabolic Equations

Taking a = 0, r = 0 and s = 0 in our model, Eq. (6) leads to the heat or
diffusion equation

ut − (b ux)x = 0, (8)

which is parabolic. In addition to appropriate boundary conditions of the form
used for elliptic equations, we also require an initial condition at t = 0 of the
form u(x, 0) = u0(x) where u0 is a given function.

If b is constant, this equation admits solutions of the form u(x, t) = Aeβt

sin kx if β + k2b = 0. A notable feature of the solution is that it decays when
b is positive as the exponent β < 0. The rate of decay is a function of b. The
more diffusive the equation (i.e., larger b) the faster the decay of the solution
is. In general the solution can be made up of many sine waves of different
frequencies, i.e., a Fourier expansion of the form

u(x, t) =
∑

m

Ameβm t sin km x,

where Am and km represent the amplitude and the frequency of a Fourier mode,
respectively. The decay of the solution depends on the Fourier contents of the
initial data since βm = −k2

mb. High frequencies decay at a faster rate than the
low frequencies which physically means that the solution is being smoothed.
This is illustrated in Fig. 1 which shows the time evolution of u(x, t) for
an initial condition u0(x) = 20x for 0 ≤ x ≤ 1/2 and u0(x) = 20(1 − x) for
1/2 ≤ x ≤ 1. The solution shows a rapid smoothing of the slope disconti-
nuity of the initial condition at x = 1/2. The presence of a positive diffusion
(b > 0) physically results in a smoothing of the solution which stabilizes it. On
the other hand, negative diffusion (b < 0) is de-stabilizing but most physical
problems have positive diffusion.
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Figure 1. Rate of decay of the solution to the diffusion equation.

2.3. Hyperbolic Equations

A classic example of hyperbolic equation is the linear advection equation

ut + a ux = 0, (9)

where a represents a constant velocity. The above equation is also clearly
equivalent to Eq. (6) with b = r = s = 0. This hyperbolic equation also re-
quires an initial condition, u(x, 0) = u0(x). The question of what boundary
conditions are appropriate for this equation can be more easily be answered
after considering its solution. It is easy to verify by substitution in (9) that the
solution is given by u(x, t) = u0(x − at). This describes the propagation of
the quantity u(x, t) moving with speed “a” in the x-direction as depicted in
Fig. 2. The solution is constant along the characteristic line x − at = c with
u(x, t) = u0(c).

From the knowledge of the solution, we can appreciate that for a > 0 a
boundary condition should be prescribed at x = 0, (e.g., u(0) = α0) where in-
formation is being fed into the solution domain. The value of the solution at
x = 1 is determined by the initial conditions or the boundary condition at x = 0
and cannot, therefore, be prescribed. This simple argument shows that, in a hy-
perbolic problem, the selection of appropriate conditions at a boundary point
depends on the solution at that point. If the velocity is negative, the previous
treatment of the boundary conditions is reversed.
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x

x

t
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u (x,t  ) Characteristic
x �at  � c

Figure 2. Solution of the linear advection equation.

The propagation velocity can also be a function of space, i.e., a = a(x) or
even the same as the quantity being propagated, i.e., a = u(x, t). The choice
a = u(x, t) leads to the non-linear inviscid Burgers’ equation

ut + u ux = 0. (10)

An analogous analysis to that used for the advection equation shows that
u(x, t) is constant if we are moving with a local velocity also given by u(x, t).
This means that some regions of the solution advance faster than other re-
gions leading to the formation of sharp gradients. This is illustrated in Fig. 3.
The initial velocity is represented by a triangular “zig-zag” wave. Peaks and
troughs in the solution will advance, in opposite directions, with maximum
speed. This will eventually lead to an overlap as depicted by the dotted line
in Fig. 3. This results in a non-uniqueness of the solution which is obviously
non-physical and to resolve this problem we must allow for the formation and
propagation of discontinuities when two characteristics intersect (see Ref. [2]
for further details).

3. Numerical Schemes

There are many situations where obtaining an exact solution of a PDE is
not possible and we have to resort to approximations in which the infinite set
of values in the continuous solution is represented by a finite set of values
referred to as the discrete solution.

For simplicity we consider first the case of a function of one variable u(x).
Given a set of points xi ; i = 1, . . . , N in the domain of definition of u(x), as
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Figure 3. Formation of discontinuities in the Burgers’ equation.
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Figure 4. Discretization of the domain.

shown in Fig. 4, the numerical solution that we are seeking is represented by a
discrete set of function values {u1, . . . , uN } that approximate u at these points,
i.e., ui ≈ u(xi ); i = 1, . . . , N .

In what follows, and unless otherwise stated, we will assume that the points
are equally spaced along the domain with a constant distance �x = xi+1 − xi ;
i = 1, . . . , N − 1. This way we will write ui+1 ≈ u(xi+1) = u(xi + �x). This
partition of the domain into smaller subdomains is referred to as a mesh or
grid.
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3.1. The Finite Difference Method (FDM)

This method is used to obtain numerical approximations of PDEs written
in the strong form (3). The derivative of u(x) with respect to x can be defined
as

ux |i = ux(xi ) = lim
�x→0

u(xi + �x) − u(xi )

�x

= lim
�x→0

u(xi ) − u(xi − �x)

�x
(11)

= lim
�x→0

u(xi + �x) − u(xi − �x)

2�x
.

All these expressions are mathematically equivalent, i.e., the approximation
converges to the derivative as �x → 0. If �x is small but finite, the various
terms in Eq. (11) can be used to obtain approximations of the derivate ux of
the form

ux |i ≈ ui+1 − ui

�x
(12)

ux |i ≈ ui − ui−1

�x
(13)

ux |i ≈ ui+1 − ui−1

2�x
. (14)

The expressions (12)–(14) are referred to as forward, backward and centred
finite difference approximations of ux |i , respectively. Obviously these approx-
imations of the derivative are different.

3.1.1. Errors in the FDM

The analysis of these approximations is performed by using Taylor expan-
sions around the point xi . For instance an approximation to ui+1 using n + 1
terms of a Taylor expansion around xi is given by

ui+1 = ui + ux |i �x + uxx |i
�x2

2
+ · · · + dnu

dxn

∣∣∣∣
i

�xn

n!

+ dn+1u

dxn+1
(x∗)

�xn+1

(n + 1)!
. (15)

The underlined term is called the remainder with xi ≤ x∗ ≤ xi+1, and repre-
sents the error in the approximation if only the first n terms in the expansion
are kept. Although the expression (15) is exact, the position x∗ is unknown.
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To illustrate how this can be used to analyse finite difference approxima-
tions, consider the case of the forward difference approximation (12) and use
the expansion (15) with n = 1 (two terms) to obtain

ui+1 − ui

�x
= ux |i + �x

2
uxx(x∗). (16)

We can now write the approximation of the derivative as

ux |i =
ui+1 − ui

�x
+ εT (17)

where εT is given by

εT = −�x

2
uxx(x∗). (18)

The term εT is referred to as the truncation error and is defined as the
difference between the exact value and its numerical approximation. This term
depends on �x but also on u and its derivatives. For instance, if u(x) is a linear
function then the finite difference approximation is exact and εT = 0 since the
second derivative is zero in (18).

The order of a finite difference approximation is defined as the power p
such that lim�x→0(εT/�x p) = γ =/ 0, where γ is a finite value. This is often
written as εT = O(�x p). For instance, for the forward difference approxima-
tion (12), we have εT = O(�x) and it is said to be first-order accurate (p = 1).

If we apply this method to the backward and centred finite difference
approximations (13) and (14), respectively, we find that, for constant �x , their
errors are

ux |i =
ui − ui−1

�x
+ �x

2
uxx(x∗) ⇒ εT = O(�x) (19)

ux |i =
ui+1 − ui−1

2�x
− �x2

12
uxxx(x	) ⇒ εT = O(�x2) (20)

with xi−1 ≤ x∗ ≤ xi and xi−1 ≤ x	 ≤ xi+1 for Eqs. (19) and (20), respectively.
This analysis is confirmed by the numerical results presented in Fig. 5 that

displays, in logarithmic axes, the exact and truncation errors against �x for the
backward and the centred finite differences. Their respective truncation errors
εT are given by (19) and (20) calculated here, for lack of a better value, with
x∗ = x	 = xi . The exact error is calculated as the difference between the exact
value of the derivative and its finite difference approximation.

The slope of the lines are consistent with the order of the truncation error,
i.e., 1:1 for the backward difference and 1:2 for the centred difference. The dis-
crepancies between the exact and the numerical results for the smallest values
of �x are due to the use of finite precision computer arithmetic or round-off
error. This issue and its implications are discussed in more detail in numerical
analysis textbooks as in Ref. [3].
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Figure 5. Truncation and rounding errors in the finite difference approximation of derivatives.

3.1.2. Derivation of approximations using Taylor expansions

The procedure described in the previous section can be easily transformed
into a general method for deriving finite difference schemes. In general, we can
obtain approximations to higher order derivatives by selecting an appropriate
number of interpolation points that permits us to eliminate the highest term
of the truncation error from the Taylor expansions. We will illustrate this with
some examples. A more general description of this derivation can be found in
Hirsch (1988).

A second-order accurate finite difference approximation of the derivative
at xi can be derived by considering the values of u at three points: xi−1, xi and
xi+1. The approximation is constructed as a weighted average of these values
{ui−1, ui , ui+1} such as

ux |i ≈ αui+1 + βui + γ ui−1

�x
. (21)

Using Taylor expansions around xi we can write

ui+1 = ui + �x ux |i + �x2

2
uxx |i + �x3

6
uxxx |i + · · · (22)

ui−1 = ui − �x ux |i + �x2

2
uxx |i − �x3

6
uxxx |i + · · · (23)
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Putting (22), (23) into (21) we get

αui+1 + βui + γ ui−1

�x
= (α + β + γ )

1

�x
ui + (α − γ ) ux |i

+ (α + γ )
�x

2
uxx |i + (α − γ )

�x2

6
uxxx |i

+ (α + γ )
�x3

12
uxxxx |i + O(�x4) (24)

We require three independent conditions to calculate the three unknowns α,
β and γ . To determine these we impose that the expression (24) is consistent
with increasing orders of accuracy. If the solution is constant, the left-hand side
of (24) should be zero. This requires the coefficient of (1/�x)ui to be zero and
therefore α+β+γ = 0. If the solution is linear, we must have α−γ =1 to match
ux |i . Finally whilst the first two conditions are necessary for consistency of
the approximation in this case we are free to choose the third condition. We
can therefore select the coefficient of (�x/2) uxx |i to be zero to improve the
accuracy, which means α + γ = 0.

Solving these three equations we find the values α = 1/2, β = 0 and γ =
−(1/2) and recover the second-order accurate centred formula

ux |i =
ui+1 − ui−1

2�x
+ O(�x2).

Other approximations can be obtained by selecting a different set of points,
for instance, we could have also chosen three points on the side of xi , e.g.,
ui , ui−1, ui−2. The corresponding approximation is known as a one-sided for-
mula. This is sometimes useful to impose boundary conditions on ux at the
ends of the mesh.

3.1.3. Higher-order derivatives

In general, we can derive an approximation of the second derivative using
the Taylor expansion

αui+1 + βui + γ ui−1

�x2
= (α + β + γ )

1

�x2
ui + (α − γ )

1

�x
ux |i

+ (α + γ )
1

2
uxx |i + (α − γ )

�x

6
uxxx |i

+ (α + γ )
�x2

12
uxxxx |i + O(�x4). (25)
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Using similar arguments to those of the previous section we impose

α + β + γ = 0
α − γ = 0
α + γ = 2



 ⇒ α = γ = 1, β = −2. (26)

The first and second conditions require that there are no u or ux terms on the
right-hand side of Eq. (25) whilst the third conditon ensures that the right-
hand side approximates the left-hand side as �x tens to zero. The solution of
Eq. (26) lead us to the second-order centred approximation

uxx |i =
ui+1 − 2ui + ui−1

�x2
+ O(�x2). (27)

The last term in the Taylor expansion (α − γ )�xuxxx |i/6 has the same coeffi-
cient as the ux terms and cancels out to make the approximation second-order
accurate. This cancellation does not occur if the points in the mesh are not
equally spaced. The derivation of a general three point finite difference ap-
proximation with unevenly spaced points can also be obtained through Taylor
series. We leave this as an exercise for the reader and proceed in the next
section to derive a general form using an alternative method.

3.1.4. Finite differences through polynomial interpolation

In this section we seek to approximate the values of u(x) and its derivatives
by a polynomial P(x) at a given point xi . As way of an example we will
derive similar expressions to the centred differences presented previously by
considering an approximation involving the set of points {xi−1, xi , xi+1} and
the corresponding values {ui−1, ui , ui+1}. The polynomial of minimum degree
that satisfies P(xi−1) = ui−1, P(xi ) = ui and P(xi+1) = ui+1 is the quadratic
Lagrange polynomial

P(x) = ui−1
(x − xi )(x − xi+1)

(xi−1 − xi )(xi−1 − xi+1)
+ ui

(x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)

+ ui+1
(x − xi−1)(x − xi )

(xi+1 − xi−1)(xi+1 − xi )
. (28)

We can now obtain an approximation of the derivative, ux |i ≈ Px(xi ) as

Px(xi ) = ui−1
(xi − xi+1)

(xi−1 − xi )(xi−1 − xi+1)
+ ui

(xi − xi−1) + (xi − xi+1)

(xi − xi−1)(xi − xi+1)

+ ui+1
(xi − xi−1)

(xi+1 − xi−1)(xi+1 − xi )
. (29)

If we take xi − xi−1 = xi+1 − xi = �x , we recover the second-order accu-
rate finite difference approximation (14) which is consistent with a quadratic
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Homework 1 Use Taylor expansion to derive expressions for ux,i of orders
O(∆x3) and O(∆x4) using five-point stencil, {un : i − 2 ≤ n ≤ i + 2}. (Hint:
You’re going to get one backward differencing (BD) and one forward differencing
(FD) that are of orders O(∆x3), and one centered-differencing (CD) that is of
O(∆x4).)

Homework 2 Use Taylor expansion to derive expressions for uxx,i of order
O(∆x4) using five-point stencil, {un : i− 2 ≤ n ≤ i+ 2}. (Hint: You’re going to
get one centered-differencing (CD) that is of O(∆x4).)

Homework 3 Consider f(x) = sin(x) over D = [0, 2π]. Assume period BC.
(a) Use formulas (all three of them) you obtain in Homework 1 with step sizes
h = 0.1, 0.01, 0.001, and 0.0001 and calculate approximations for f ′(x) over D.
Carry nine decimal places in all of your calculations.
(b) Compare with the exact result f ′(x) = cos(x), ∀x ∈ D. What you wish to
do is to produce log-log error norm plots of ||E||1, where the discrete 1-norm of
error E is defined by

||E||1 = h

N∑

j

∣∣∣Fexact(xj)− f ′(xj)
∣∣∣, (4.1)

versus the grid scales, 1/h. Here, Fexact is your analytical solution to which
your numerical solution f ′(xj) approximates. See Fig. 5 in the article. Please
over-plot your numerical solutions with analytical convergence rates you expect
to see (i.e., the dotted lines in Fig. 5). Discuss the convergence behaviors.
(c) Repeat the same exercises for f ′′(x) using the result you get from Homework
2.
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1. Polynomial Interpolations

We know that there exists an unique N -th order polynomial passing through
any set of N + 1 number of sample points. Depending on where it is evaluated,
this polynomial is either an interpolation polynomial or an extrapolation poly-
nomial. Two very popular interpolation polynomial choices frequently adopted
in discrete approximations are the Lagrange form and the Newton form.

1.1. Lagrange Form

See Section 3.1.4 of the attached article.

Remark: The Lagrange form is easy to derive and easy to remember but may
be difficult to work with (for example, integration and differentiation are difficult
in Lagrange form as they are in rational form).
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Using similar arguments to those of the previous section we impose

α + β + γ = 0
α − γ = 0
α + γ = 2



 ⇒ α = γ = 1, β = −2. (26)

The first and second conditions require that there are no u or ux terms on the
right-hand side of Eq. (25) whilst the third conditon ensures that the right-
hand side approximates the left-hand side as �x tens to zero. The solution of
Eq. (26) lead us to the second-order centred approximation

uxx |i =
ui+1 − 2ui + ui−1

�x2
+ O(�x2). (27)

The last term in the Taylor expansion (α − γ )�xuxxx |i/6 has the same coeffi-
cient as the ux terms and cancels out to make the approximation second-order
accurate. This cancellation does not occur if the points in the mesh are not
equally spaced. The derivation of a general three point finite difference ap-
proximation with unevenly spaced points can also be obtained through Taylor
series. We leave this as an exercise for the reader and proceed in the next
section to derive a general form using an alternative method.

3.1.4. Finite differences through polynomial interpolation

In this section we seek to approximate the values of u(x) and its derivatives
by a polynomial P(x) at a given point xi . As way of an example we will
derive similar expressions to the centred differences presented previously by
considering an approximation involving the set of points {xi−1, xi , xi+1} and
the corresponding values {ui−1, ui , ui+1}. The polynomial of minimum degree
that satisfies P(xi−1) = ui−1, P(xi ) = ui and P(xi+1) = ui+1 is the quadratic
Lagrange polynomial

P(x) = ui−1
(x − xi )(x − xi+1)

(xi−1 − xi )(xi−1 − xi+1)
+ ui

(x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)

+ ui+1
(x − xi−1)(x − xi )

(xi+1 − xi−1)(xi+1 − xi )
. (28)

We can now obtain an approximation of the derivative, ux |i ≈ Px(xi ) as

Px(xi ) = ui−1
(xi − xi+1)

(xi−1 − xi )(xi−1 − xi+1)
+ ui

(xi − xi−1) + (xi − xi+1)

(xi − xi−1)(xi − xi+1)

+ ui+1
(xi − xi−1)

(xi+1 − xi−1)(xi+1 − xi )
. (29)

If we take xi − xi−1 = xi+1 − xi = �x , we recover the second-order accu-
rate finite difference approximation (14) which is consistent with a quadratic
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interpolation. Similarly, for the second derivative we have

Pxx(xi ) =
2ui−1

(xi−1 − xi )(xi−1 − xi+1)
+ 2ui

(xi − xi−1)(xi − xi+1)

+ 2ui+1

(xi+1 − xi−1)(xi+1 − xi )
(30)

and, again, this approximation leads to the second-order centred finite differ-
ence (27) for a constant �x .

This result is general and the approximation via finite differences can be
interpreted as a form of Lagrangian polynomial interpolation. The order of the
interpolated polynomial is also the order of accuracy of the finite diference
approximation using the same set of points. This is also consistent with the
interpretation of a Taylor expansion as an interpolating polynomial.

3.1.5. Finite difference solution of PDEs

We consider the FDM approximation to the solution of the elliptic equation
uxx = s(x) in the region � = {x : 0 ≤ x ≤ 1}. Discretizing the region using N
points with constant mesh spacing �x = (1/N − 1) or xi = (i − 1/N − 1), we
consider two cases with different sets of boundary conditions:

1. u(0) = α1 and u(1) = α2, and
2. u(0) = α1 and ux(1) = g.

In both cases we adopt a centred finite approximation in the interior points
of the form

ui+1 − 2ui + ui−1

�x2
= si ; i = 2, . . . , N − 1. (31)

The treatment of the first case is straightforward as the boundary conditions
are easily specified as u1 = α1 and uN = α2. These two conditions together with
the N − 2 equations (31) result in the linear system of N equations with N
unknowns represented by




1 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 0 . . . 0

. . .
. . .

. . .

0 . . . 0 1 −2 1 0
0 . . . 0 1 −2 1
0 . . . 0 1







u1

u2

u3
...

uN−2

uN−1

uN




=




α1

�x2s2

�x2s3
...

�x2sN−2

�x2sN−1

α2




.
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Example: Find the Lagrange form of the interpolation polynomial passing
through (−1, 1), (0, 2), (3, 101), (4, 246).

P3(x) = 1
x

−1− 0

x− 3

−1− 3

x− 4

−1− 4
+ 2

x+ 1

0 + 1

x− 3

0− 3

x− 4

0− 4

+101
x+ 1

3 + 1

x− 0

3− 0

x− 4

3− 4
+ 246

x+ 1

4 + 1

x− 0

4− 0

x− 3

4− 3
(4.2)

= − 1

20
x(x− 3)(x− 4) +

2

12
(x+ 1)(x− 3)(x− 4)

−101

12
(x+ 1)x(x− 4) +

246

20
(x+ 1)x(x− 3) (4.3)

1.2. Newton Form

The Newton form of a polynomial is defined as

PN (x) = a0 +
N∑

i=1

ai

i−1∏

j=0

(x− xj) (4.4)

= f [x0] +

N∑

i=1

f [x0, ..., xi]

i−1∏

j=0

(x− xj), (4.5)

where the Newton divided differences f [xi, ..., xi+n] is recursively defined as

f [xi, ..., xi+n] =
f [xi+1, .., xi+n]− f [xi, .., xi+n−1]

xi+n − xi
, (4.6)

with the zeroth Newton divided difference is

f [xi] = f(xi). (4.7)

The Newton form is easily understood if we solve the same example we had
in the Lagrange form:

Example: Find the Newton form of the interpolation polynomial passing
through (−1, 1), (0, 2), (3, 101), (4, 246).

We first get the zeroth one: f [x0] = f [−1] = f(−1) = 1.
Next, let’s compute three of the first Newton divided differences:

f [x0, x1] =
2− 1

0− (−1)
= 1 (4.8)

f [x1, x2] =
101− 2

3− 0
= 33 (4.9)

f [x2, x3] =
246− 101

4− 3
= 145 (4.10)
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Next, we obtain two of the second Newton divided differences:

f [x0, x1, x2] =
33− 1

3− (−1)
= 8 (4.11)

f [x1, x2, x3] =
145− 33

4− 0
= 28 (4.12)

Lastly, the fourth Newton divided difference is:

f [x0, x1, x2, x3] =
28− 8

4− (−1)
= 4 (4.13)

As a result, we get the following third-degree interpolation polynomial,

P3(x) = 1 + 1(x+ 1) + 8(x+ 1)x+ 4(x+ 1)x(x− 3). (4.14)

Note: One should notice that this result is the same as the one found using the
Lagrange form as shown above.

Remark: We will see later that the Newton form is very handy and useful in
constructing some of the high-order interpolation and reconstruction schemes
such as ENO, WENO, PPM, etc.
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interpolation. Similarly, for the second derivative we have

Pxx(xi ) =
2ui−1

(xi−1 − xi )(xi−1 − xi+1)
+ 2ui

(xi − xi−1)(xi − xi+1)

+ 2ui+1

(xi+1 − xi−1)(xi+1 − xi )
(30)

and, again, this approximation leads to the second-order centred finite differ-
ence (27) for a constant �x .

This result is general and the approximation via finite differences can be
interpreted as a form of Lagrangian polynomial interpolation. The order of the
interpolated polynomial is also the order of accuracy of the finite diference
approximation using the same set of points. This is also consistent with the
interpretation of a Taylor expansion as an interpolating polynomial.

3.1.5. Finite difference solution of PDEs

We consider the FDM approximation to the solution of the elliptic equation
uxx = s(x) in the region � = {x : 0 ≤ x ≤ 1}. Discretizing the region using N
points with constant mesh spacing �x = (1/N − 1) or xi = (i − 1/N − 1), we
consider two cases with different sets of boundary conditions:

1. u(0) = α1 and u(1) = α2, and
2. u(0) = α1 and ux(1) = g.

In both cases we adopt a centred finite approximation in the interior points
of the form

ui+1 − 2ui + ui−1

�x2
= si ; i = 2, . . . , N − 1. (31)

The treatment of the first case is straightforward as the boundary conditions
are easily specified as u1 = α1 and uN = α2. These two conditions together with
the N − 2 equations (31) result in the linear system of N equations with N
unknowns represented by




1 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 0 . . . 0

. . .
. . .

. . .

0 . . . 0 1 −2 1 0
0 . . . 0 1 −2 1
0 . . . 0 1







u1

u2

u3
...

uN−2

uN−1

uN




=




α1

�x2s2

�x2s3
...

�x2sN−2

�x2sN−1

α2




.



Finite methods for partial differential equations 15

This matrix system can be written in abridged form as Au = s. The matrix
A is non-singular and admits a unique solution u. This is the case for most
discretization of well-posed elliptic equations.

In the second case the boundary condition u(0) = α1 is treated in the same
way by setting u1 = α1. The treatment of the Neumann boundary condition
ux(1) = g requires a more careful consideration. One possibility is to use a
one-sided approximation of ux(1) to obtain

ux(1) ≈ uN − uN−1

�x
= g. (32)

This expression is only first-order accurate and thus inconsistent with the
approximation used at the interior points. Given that the PDE is elliptic, this
error could potentially reduce the global accuracy of the solution. The alterna-
tive is to use a second-order centred approximation

ux(1) ≈ uN+1 − uN−1

�x
= g. (33)

Here the value uN+1 is not available since it is not part of our discrete set of
values but we could use the finite difference approximation at xN given by

uN+1 − 2uN + uN−1

�x2
= sN

and include the Neumann boundary condition (33) to obtain

uN − uN−1 =
1

2
(g�x − sN �x2). (34)

It is easy to verify that the introduction of either of the Neumann boundary
conditions (32) or (34) leads to non-symmetric matrices.

3.2. Time Integration

In this section we address the problem of solving time-dependent PDEs
in which the solution is a function of space and time u(x, t). Consider for
instance the heat equation

ut − buxx = s(x) in � = {x, t : 0 ≤ x ≤ 1, 0 ≤ t ≤ T }

with an initial condition u(x, 0) = u0(x) and time-dependent boundary condi-
tions u(0, t) = α1(t) and u(1, t) = α2(t), where α1 and α2 are known
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functions of t . Assume, as before, a mesh or spatial discretization of the
domain {x1, . . . , xN }.

3.2.1. Method of lines

In this technique we assign to our mesh a set of values that are functions
of time ui (t) = u(xi , t); i = 1, . . . , N . Applying a centred discretization to
the spatial derivative of u leads to a system of ordinary differential equations
(ODEs) in the variable t given by

dui

dt
=

b

x2
{ui−1(t) − 2ui (t) + ui+1(t)} + si ; i = 2, . . . , N − 1

with u1 = α1(t) and uN = α2(t). This can be written as

d

dt




u2

u3
...

uN−2

uN−1




=
b

�x2




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2







u2

u3
...

uN−2

uN−1




+




s2 + bα1(t)

�x2

s3
...

sN−2

sN−1 + bα2(t)

�x2




or in matrix form as

du
dt

(t) = A u(t) + s(t). (35)

Equation (35) is referred to as the semi-discrete form or the method of lines.
This system can be solved by any method for the integration of initial-value
problems [3]. The numerical stability of time integration schemes depends on
the eigenvalues of the matrix A which results from the space discretization.
For this example, the eigenvalues vary between 0 and −(4α/�x2) and this
could make the system very stiff, i.e., with large differences in eigenvalues, as
�x → 0.

3.2.2. Finite differences in time

The method of finite differences can be applied to time-dependent prob-
lems by considering an independent discretization of the solution u(x, t) in
space and time. In addition to the spatial discretization {x1, . . . , xN }, the dis-
cretization in time is represented by a sequence of times t0 = 0 < · · · < tn <
· · · < T . For simplicity we will assume constant intervals �x and �t in space
and time, respectively. The discrete solution at a point will be represented by
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un
i ≈ u(xi , tn) and the finite difference approximation of the time derivative

follows the procedures previously described. For example, the forward differ-
ence in time is given by

ut(x, tn) ≈ u(x, tn+1) − u(x, tn)

�t

and the backward difference in time is

ut(x, tn+1) ≈ u(x, tn+1) − u(x, tn)

�t

both of which are first-order accurate, i.e., εT = O(�t).
Returning to the heat equation ut − buxx = 0 and using a centred approx-

imation in space, different schemes can be devised depending on the time at
which the equation is discretized. For instance, the use of forward differences
in time leads to

un+1
i − un

i

�t
=

b

�x2

(
un

i−1 − 2un
i + un

i+1

)
. (36)

This scheme is explicit as the values of the solution at time tn+1 are obtained
directly from the corresponding (known) values at time tn . If we use backward
differences in time, the resulting scheme is

un+1
i − un

i

�t
=

b

�x2

(
un+1

i−1 − 2un+1
i + un+1

i+1

)
. (37)

Here to obtain the values at tn+1 we must solve a tri-diagonal system of equa-
tions. This type of schemes are referred to as implicit schemes.

The higher cost of the implicit schemes is compensated by a greater numer-
ical stability with respect to the explicit schemes which are stable in general
only for some combinations of �x and �t .

3.3. Discretizations Based on the Integral Form

The FDM uses the strong or differential form of the governing equations.
In the following, we introduce two alternative methods that use their integral
form counterparts: the finite element and the finite volume methods. The use
of integral formulations is advantageous as it provides a more natural treat-
ment of Neumann boundary conditions as well as that of discontinuous source
terms due to their reduced requirements on the regularity or smoothness of the
solution. Moreover, they are better suited than the FDM to deal with complex
geometries in multi-dimensional problems as the integral formulations do not
rely in any special mesh structure.
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These methods use the integral form of the equation as the starting point
of the discretization process. For example, if the strong form of the PDE is
L(u) = s, the integral from is given by

1∫

0

L(u)w(x) dx =

1∫

0

sw(x) dx (38)

where the choice of the weight function w(x) defines the type of scheme.

3.3.1. The finite element method (FEM)

Here we discretize the region of interest � = {x : 0 ≤ x ≤ 1} into N − 1
subdomains or elements �i = {x : xi−1 ≤ x ≤ xi } and assume that the approx-
imate solution is represented by

uδ(x, t) =
N∑

i=1

ui (t)Ni(x)

where the set of functions Ni (x) is known as the expansion basis. Its support
is defined as the set of points where Ni (x) =/ 0. If the support of Ni (x) is the
whole interval, the method is called a spectral method. In the following we will
use expansion bases with compact support which are piecewise continuous
polynomials within each element as shown in Fig. 6.

The global shape functions Ni (x) can be split within an element into two
local contributions of the form shown in Fig. 7. These individual functions are
referred to as the shape functions or trial functions.

3.3.2. Galerkin FEM

In the Galerkin FEM method we set the weight function w(x) in Eq. (38)
to be the same as the basis function Ni (x), i.e., w(x) = Ni (x).

Consider again the elliptic equation L(u) = uxx = s(x) in the region � with
boundary conditions u(0) = α and ux(1) = g. Equation (38) becomes

1∫

0

w(x)uxx dx =

1∫

0

w(x)s(x) dx .

At this stage, it is convenient to integrate the left-hand side by parts to get the
weak form

−
1∫

0

wx ux dx + w(1) ux(1) − w(0) ux(0) =

1∫

0

w(x) s(x) dx . (39)
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Figure 6. A piecewise linear approximation uδ(x, t) =
∑N

i=1 ui (t)Ni (x).
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Figure 7. Finite element expansion bases.

This is a common technique in the FEM because it reduces the smoothness
requirements on u and it also makes the matrix of the discretized system sym-
metric. In two and three dimensions we would use Gauss’ divergence theorem
to obtain a similar result.

The application of the boundary conditions in the FEM deserves attention.
The imposition of the Neumann boundary condition ux(1) = g is straightfor-
ward, we simply substitute the value in Eq. (39). This is a very natural way
of imposing Neumann boundary conditions which also leads to symmetric
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matrices, unlike the FDM. The Dirichlet boundary condition u(0) = α can be
applied by imposing u1 = α and requiring that w(0) = 0. In general, we will
impose that the weight functions w(x) are zero at the Dirichlet boundaries.

Letting u(x) ≈ uδ(x) =
∑N

j=1 u j N j (x) and w(x) = Ni (x) then Eq. (39) be-
comes

−
1∫

0

dNi

dx
(x)

N∑

j=1

u j
dN j

dx
(x) dx =

1∫

0

Ni (x) s(x) dx (40)

for i =2, . . . , N . This represents a linear system of N − 1 equations with N − 1
unknowns: {u2, . . . , uN }. Let us proceed to calculate the integral terms corre-
sponding to the i th equation. We calculate the integrals in Eq. (40) as sums of
integrals over the elements �i . The basis functions have compact support, as
shown in Fig. 6. Their value and their derivatives are different from zero only
on the elements containing the node i , i.e.,

Ni (x) =





x − xi−1

�xi−1
xi−1 < x < xi

xi+1 − x

�xi
xi < x < xi+1

dNi (x)

dx
=





1

�xi−1
xi−1 < x < xi

−1

�xi
xi < x < xi+1

with �xi−1 = xi − xi−1 and �xi = xi+1 − xi . This means that the only integrals
different from zero in (40) are

−
xi∫

xi−1

dNi

dx

(
ui−1

dNi−1

dx
+ ui

dNi

dx

)
−

xi+1∫

xi

dNi

dx

(
ui

dNi

dx
+ ui+1

dNi+1

dx

)
dx

=

xi∫

xi−1

Ni s dx +
xi+1∫

xi

Ni s dx (41)

The right-hand side of this equation expressed as

F =

xi∫

xi−1

x − xi−1

�xi−1
s(x) dx +

xi+1∫

xi

xi+1 − x

�xi
s(x) dx

can be evaluated using a simple integration rule like the trapezium rule
xi+1∫

xi

g(x) dx ≈ g(xi) + g(xi+1)

2
�xi
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and it becomes

F =
(

�xi−1

2
+ �xi

2

)
si .

Performing the required operations in the left-hand side of Eq. (41) and includ-
ing the calculated valued of F leads to the FEM discrete form of the equation
as

−ui − ui−1

�xi−1
+ ui+1 − ui

�xi
=

�xi−1 + �xi

2
si .

Here if we assume that �xi−1 = �xi = �x then the equispaced approximation
becomes

ui+1 − 2ui + ui−1

�x
= �x si

which is identical to the finite difference formula. We note, however, that the
general FE formulation did not require the assumption of an equispaced mesh.

In general the evaluation of the integral terms in this formulation are more
efficiently implemented by considering most operations in a standard element
�st = {−1 ≤ x ≤ 1} where a mapping is applied from the element �i to the
standard element �st . For more details on the general formulation see Ref. [4].

3.3.3. Finite volume method (FVM)

The integral form of the one-dimensional linear advection equation is given
by Eq. (1) with f (u) = au and S = 0. Here the region of integration is taken to
be a control volume �i , associated with the point of coordinate xi , represented
by xi−(1/2) ≤ x ≤ xi+(1/2), following the notation of Fig. 4, and the integral
form is written as

xi+(1/2)∫

xi−(1/2)

ut dx +
xi+(1/2)∫

xi−(1/2)

fx(u) dx = 0. (42)

This expression could also been obtained from the weighted residual form (4)
by selecting a weight w(x) such that w(x) = 1 for xi−(1/2) ≤ x ≤ xi+(1/2) and
w(x) = 0 elsewhere. The last term in Eq. (42) can be evaluated analytically to
obtain

xi+(1/2)∫

xi−(1/2)

fx(u) dx = f
(
ui+(1/2)

) − f
(
ui−(1/2)

)
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and if we approximate the first integral using the mid-point rule we finally
have the semi-discrete form

ut |i
(
xi+(1/2) − xi−(1/2)

) + f
(
ui+(1/2)

) − f
(
ui−(1/2)

)
= 0.

This approach produces a conservative scheme if the flux on the boundary
of one cell equals the flux on the boundary of the adjacent cell. Conservative
schemes are popular for the discretization of hyperbolic equations since, if
they converge, they can be proven (Lax-Wendroff theorem) to converge to a
weak solution of the conservation law.

3.3.4. Comparison of FVM and FDM

To complete our comparison of the different techniques we consider the
FVM discretization of the elliptic equation uxx = s. The FVM integral form of
this equation over a control volume �i = {xi−(1/2) ≤ x ≤ xi+(1/2)} is

xi+(1/2)∫

xi−(1/2)

uxx dx =

xi+(1/2)∫

xi−(1/2)

s dx .

Evaluating exactly the left-hand side and approximating the right-hand side by
the mid-point rule we obtain

ux
(
xi+(1/2)

) − ux
(
xi−(1/2)

)
=
(
xi+(1/2) − xi−(1/2)

)
si . (43)

If we approximate u(x) as a linear function between the mesh points i − 1 and
i , we have

ux |i−(1/2) ≈ ui − ui−1

xi − xi−1
, ux |i+(1/2) ≈ ui+1 − ui

xi+1 − xi
,

and introducing these approximations into Eq. (43) we now have

ui+1 − ui

xi+1 − xi
− ui − ui−1

xi − xi−1
= (xi+(1/2) − xi−(1/2)) si .

If the mesh is equispaced then this equation reduces to

ui+1 − 2ui + ui−1

�x
= �x si ,

which is the same as the FDM and FEM on an equispaced mesh.
Once again we see the similarities that exist between these methods

although some assumptions in the construction of the FVM have been made.
FEM and FVM allow a more general approach to non-equispaced meshes
(although this can also be done in the FDM). In two and three dimensions,
curvature is more naturally dealt with in the FVM and FEM due to the integral
nature of the equations used.
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4. High Order Discretizations: Spectral Element/ p-Type
Finite Elements

All of the approximations methods we have discussed this far have dealt
with what is typically known as the h-type approximation. If h = �x denotes
the size of a finite difference spacing or finite elemental regions then conver-
gence of the discrete approximation to the PDE is achieved by letting h → 0.
An alternative method is to leave the mesh spacing fixed but to increase the
polynomial order of the local approximation which is typically denoted by p
or the p-type extension.

We have already seen that higher order finite difference approximations
can be derived by fitting polynomials through more grid points. The draw-
back of this approach is that the finite difference stencil gets larger as the
order of the polynomial approximation increases. This can lead to difficulties
when enforcing boundary conditions particularly in multiple dimensions. An
alternative approach to deriving high order finite differences is to use com-
pact finite differences where a Padé approximation is used to approximate the
derivatives.

When using the finite element method in an integral formulation, it is
possible to develop a compact high-order discretization by applying higher
order polynomial expansions within every elemental region. So instead of us-
ing just a linear element in each piecewise approximation of Fig. 6 we can
use a polynomial of order p. This technique is commonly known as p-type
finite element in structural mechanics or the spectral element method in fluid
mechanics. The choice of the polynomial has a strong influence on the nu-
merical conditioning of the approximation and we note that the choice of an
equi-spaced Lagrange polynomial is particularly bad for p > 5. The two most
commonly used polynomial expansions are Lagrange polynomial based on the
Gauss–Lobatto–Legendre quadratures points or the integral of the Legendre
polynomials in combination with the linear finite element expansion. These
two polynomial expansions are shown in Fig. 8. Although this method is more
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Figure 8. Shape of the fifth order (p = 5) polynomial expansions typically used in (a) spectral
element and (b) p-type finite element methods.
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involved to implement, the advantage is that for a smooth problem (i.e., one
where the derivatives of the solution are well behaved) the computational cost
increases algebraically whilst the error decreases exponentially fast. Further
details on these methods can be found in Refs. [5, 6].

5. Numerical Difficulties

The discretization of linear elliptic equations with either FD, FE or FV
methods leads to non-singular systems of equations that can easily solved by
standard methods of solution. This is not the case for time-dependent problems
where numerical errors may grow unbounded for some discretization. This is
perhaps better illustrated with some examples.

Consider the parabolic problem represented by the diffusion equation ut −
uxx = 0 with boundary conditions u(0) = u(1) = 0 solved using the scheme
(36) with b = 1 and �x = 0.1. The results obtained with �t = 0.004 and 0.008
are depicted in Figs. 9(a) and (b), respectively. The numerical solution (b)
corresponding to �t = 0.008 is clearly unstable.

A similar situation occurs in hyperbolic problems. Consider the one-
dimensional linear advection equation ut + aux = 0; with a > 0 and various
explicit approximations, for instance the backward in space, or upwind,
scheme is

un+1
i − un

i

�t
+ a

un
i − un

i−1

�x
= 0 ⇒ un+1

i = (1 − σ)un
i + σun

i−1, (44)

the forward in space, or downwind, scheme is

un+1
i − un

i

�t
+ a

un
i+1 − un

i

�x
= 0 ⇒ un+1

i = (1 + σ)un
i − σun

i+1, (45)
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Figure 9. Solution to the diffusion equation ut + uxx = 0 using a forward in time and centred
in space finite difference discretization with �x = 0.1 and (a) �t = 0.004, and (b) �t = 0.008.
The numerical solution in (b) is clearly unstable.
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u(x, 0) =





0 x ≤ −0.2
1 + 5x −0.2 ≤ x ≤ 0
1 − 5x 0 ≤ x ≤ 0.2
0 x ≥ 0.2

0.2 0.2

0.0

1.0
a

u(x,t)

x

Figure 10. A triangular wave as initial condition for the advection equation.

and, finally, the centred in space is given by

un+1
i − un

i

�t
+ a

un
i+1 − un

i−1

2�x
= 0 ⇒ un+1

i = un
i − σ

2
(un

i+1 − un
i−1)

(46)

where σ = (a�t/�x) is known as the Courant number. We will see later that
this number plays an important role in the stability of hyperbolic equations.
Let us obtain the solution of ut + aux = 0 for all these schemes with the initial
condition given in Fig. 10.

As also indicated in Fig. 10, the exact solution is the propagation of this
wave form to the right at a velocity a. Now we consider the solution of the
three schemes at two different Courant numbers given by σ = 0.5 and 1.5. The
results are presented in Fig. 11 and we observe that only the upwinded scheme
when σ ≤ 1 gives a stable, although diffusive, solution. The centred scheme
when σ = 0.5 appears almost stable but the oscillations grow in time leading
to an unstable solution.

6. Analysis of Numerical Schemes

We have seen that different parameters, such as the Courant number, can
effect the stability of a numerical scheme. We would now like to set up a
more rigorous framework to analyse a numerical scheme and we introduce the
concepts of consistency, stability and Convergence of a numerical scheme.

6.1. Consistency

A numerical scheme is consistent if the discrete numerical equation tends
to the exact differential equation as the mesh size (represented by �x and �t)
tends to zero.
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Figure 11. Numerical solution of the advection equation ut + aux = 0. Dashed lines: initial
condition. Dotted lines: exact solution. Solid line: numerical solution.

Consider the centred in space and forward in time finite diference approxi-
mation to the linear advection equation ut + aux = 0 given by Eq. (46). Let us
consider Taylor expansions of un+1

i , un
i+1 and un

i−1 around (xi , tn) as

un+1
i = un

i + �t ut |ni + �t2

2
utt |ni + · · ·
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un
i+1 = un

i + �x ux |ni + �x2

2
uxx |ni + �x3

6
uxxx |ni + · · ·

un
i−1 = un

i − �x ux |ni + �x2

2
uxx |ni − �x3

6
uxxx |ni + · · ·

Substituting these expansions into Eq. (46) and suitably re-arranging the terms
we find that

un+1
i − un

i

�t
+ a

un
i+1 − un

i−1

2�x
− (ut + aux)|ni = εT (47)

where εT is known as the truncation error of the approximation and is
given by

εT =
�t

2
utt |ni + �x2

6
auxxx |ni + O(�t2, �x4).

The left-hand side of this equation will tend to zero as �t and �x tend to zero.
This means that the numerical scheme (46) tends to the exact equation at point
xi and time level tn and therefore this approximation is consistent.

6.2. Stability

We have seen in the previous numerical examples that errors in numeri-
cal solutions can grow uncontrolled and render the solution meaningless. It
is therefore sensible to require that the solution is stable, this is that the dif-
ference between the computed solution and the exact solution of the discrete
equation should remain bounded as n → ∞ for a given �x .

6.2.1. The Courant–Friedrichs–Lewy (CFL) condition

This is a necessary condition for stability of explicit schemes devised by
Courant, Friedrichs and Lewy in 1928.

Recalling the theory of characteristics for hyperbolic systems, the domain
of dependence of a PDE is the portion of the domain that influences the so-
lution at a given point. For a scalar conservation law, it is the characteristic
passing through the point, for instance, the line P Q in Fig. 12. The domain
of dependence of a FD scheme is the set of points that affect the approximate
solution at a given point. For the upwind scheme, the numerical domain of
dependence is shown as a shaded region in Fig. 12.

The CFL criterion states that a necessary condition for an explicit FD
scheme to solve a hyperbolic PDE to be stable is that, for each mesh point,
the domain of dependence of the FD approximation contains the domain of
dependence of the PDE.
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Figure 12. Solution of the advection equation by the upwind scheme. Physical and numerical
domains of dependence: (a) σ = (a�t/�x) > 1, (b) σ ≤ 1.

For a Courant number σ = (a�t/�x) greater than 1, changes at Q will
affect values at P but the FD approximation cannot account for this.

The CFL condition is necessary for stability of explicit schemes but it is
not sufficient. For instance, in the previous schemes we have that the upwind
FD scheme is stable if the CFL condition σ ≤ 1 is imposed. The downwind
FD scheme does not satisfy the CFL condition and is unstable. However, the
centred FD scheme is unstable even if σ ≤ 1.

6.2.2. Von Neumann (or Fourier) analysis of stability

The stability of FD schemes for hyperbolic and parabolic PDEs can be
analysed by the von Neumann or Fourier method. The idea behind the method
is the following. As discussed previously the analytical solutions of the model
diffusion equation ut − b uxx = 0 can be found in the form

u(x, t) =
∞∑

m=−∞
eβm t eI km x

if βm + b k2
m = 0. This solution involves a Fourier series in space and an expo-

nential decay in time since βm ≤ 0 for b > 0. Here we have included the com-
plex version of the Fourier series, eI km x = cos km x + I sin km x with I =

√−1,
because this simplifies considerably later algebraic manipulations.

To analyze the growth of different Fourier modes as they evolve under the
numerical scheme we can consider each frequency separately, namely

u(x, t) = eβm t eI km x .
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A discrete version of this equation is un
i = u(xi , tn) = eβm tn

eI km xi . We can take,
without loss of generality, xi = i�x and tn = n�t to obtain

un
i = eβm n�t eI kmi�x =

(
eβm�t

)n
eI kmi�x .

The term eI kmi�x = cos(kmi�x)+ I sin(kmi�x) is bounded and, therefore, any
growth in the numerical solution will arise from the term G = eβm�t , known
as the amplification factor. Therefore the numerical method will be stable, or
the numerical solution un

i bounded as n → ∞, if |G| ≤ 1 for solutions of the
form

un
i = Gn eI kmi�x .

We will now proceed to analyse, using the von Neummann method, the stabil-
ity of some of the schemes discussed in the previous sections.

Example 1 Consider the explicit scheme (36) for the diffusion equation
ut − buxx = 0 expressed here as

un+1
i = λun

i−1 + (1 − 2λ)un
i + λun

i+1; λ =
b�t

�x2
.

We assume un
i = GneI kmi�x and substitute in the equation to get

G = 1 + 2λ [cos(km�x) − 1] .

Stability requires |G| ≤ 1. Using −2 ≤ cos(km�x) − 1 ≤ 0 we get 1 − 4λ ≤
G ≤ 1 and to satisfy the left inequality we impose

−1 ≤ 1 − 4λ ≤ G =⇒ λ ≤ 1

2
.

This means that for a given grid size �x the maximum allowable timestep is
�t = (�x2/2b).

Example 2 Consider the implicit scheme (37) for the diffusion equation
ut − buxx = 0 expressed here as

λun+1
i−1 + −(1 + 2λ)un+1

i + λun+1
i+1 = −un

i ; λ =
b�t

�x2
.

The amplification factor is now

G =
1

1 + λ(2 − cos βm)

and we have |G| < 1 for any βm if λ > 0. This scheme is therefore uncondi-
tionally stable for any �x and �t . This is obtained at the expense of solving
a linear system of equations. However, there will still be restrictions on �x
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and �t based on the accuracy of the solution. The choice between an explicit
or an implicit method is not always obvious and should be done based on the
computer cost for achieving the required accuracy in a given problem.

Example 3 Consider the upwind scheme for the linear advection equa-
tion ut + aux = 0 with a > 0 given by

un+1
i = (1 − σ)un

i + σun
i−1; σ =

a�t

�x
.

Let us denote βm = km�x and introduce the discrete Fourier expression in the
upwind scheme to obtain

G = (1 − σ) + σ e−Iβm

The stability condition requires |G| ≤ 1. Recall that G is a complex number
G = ξ + Iη so

ξ = 1 − σ + σ cos βm ; η = −σ sin βm

This represents a circle of radius σ centred at 1 − σ . The stability condition
requires the locus of the points (ξ, η) to be interior to a unit circle ξ 2 +η2 ≤ 1.
If σ < 0 the origin is outside the unit circle, 1 − σ > 1, and the scheme is
unstable. If σ > 1 the back of the locus is outside the unit circle 1 − 2σ < 1 and
it is also unstable. Therefore, for stability we require 0 ≤ σ ≤ 1, see Fig. 13.

Example 4 The forward in time, centred in space scheme for the advec-
tion equation is given by

un+1
i = un

i − σ

2
(un

i+1 − un
i−1); σ =

a�t

�x
.

1 �λ

ξ

η

1
G

λ

Figure 13. Stability region of the upwind scheme.



Finite methods for partial differential equations 31

The introduction of the discrete Fourier solution leads to

G = 1 − σ

2
(eIβm − e−Iβm ) = 1 − Iσ sin βm

Here we have |G|2 = 1 + σ 2 sin2 βm > 1 always for σ=/ 0 and it is therefore
unstable. We will require a different time integration scheme to make it stable.

6.3. Convergence: Lax Equivalence Theorem

A scheme is said to be convergent if the difference between the computed
solution and the exact solution of the PDE, i.e., the error En

i = un
i − u(xi , tn),

vanishes as the mesh size is decreased. This is written as

lim
�x,�t→0

|En
i | = 0

for fixed values of xi and tn . This is the fundamental property to be sought
from a numerical scheme but it is difficult to verify directly. On the other hand,
consistency and stability are easily checked as shown in the previous sections.

The main result that permits the assessment of the convergence of a scheme
from the requirements of consistency and stability is the equivalence theorem
of Lax stated here without proof:

Stability is the necessary and sufficient condition for a consistent linear FD
approximation to a well-posed linear initial-value problem to be convergent.

7. Suggestions for Further Reading

The basics of the FDM are presented a very accessible form in Ref. [7].
More modern references are Refs. [8, 9].

An elementary introduction to the FVM can be consulted in the book by
Versteeg and Malalasekera [10]. An in-depth treatment of the topic with an
emphasis on hyperbolic problems can be found in the book by Leveque [2].

Two well established general references for the FEM are the books of
Hughes [4] and Zienkiewicz and Taylor [11]. A presentation from the point
of view of structural analysis can be consulted in Cook et al. [11]

The application of p-type finite element for structural mechanics is dealt
with in book of Szabo and Babus̆ka [5]. The treatment of both p-type and spec-
tral element methods in fluid mechanics can be found in book by Karniadakis
and Sherwin [6].

A comprehensive reference covering both FDM, FVM and FEM for fluid
dynamics is the book by Hirsch [13]. These topics are also presented using a
more mathematical perspective in the classical book by Quarteroni and Valli
[14].
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